As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper motivates research into implementing nature-inspired algorithms in decentralised, asynchronous and parallel environments. These characteristics typify environments such as Peer-To-Peer systems, the Grid and autonomic computing which demand robustness, decentralisation, parallelism, asynchronicity and self-organisation. Nature-inspired systems promise these properties. However, current implementations of nature-inspired systems are only loosely based on their natural counterparts. They are generally implemented as synchronous, sequential, centralised algorithms that loop through passive data structures. For their successes to be relevant to the aforementioned new computing environments, variants of these algorithms must work in truely decentralised, parallel and asynchronous Multi-Agent System (MAS) environments. A general methodology is presented for engineering the transfer of nature-inspired algorithms to such a MAS framework. The concept of pheromone infrastructures is reviewed in light of emerging standards for agent platform architecture and interoperability. These ideas are illustrated using a particularly successful nature-inspired algorithm, Ant Colony System for the Travelling Salesman Problem.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.