As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In a complex dynamic system the centralised control and local monitoring of system behaviour is not achievable by scaling up simple feedback adaptation and control models. This paper proposes using a variety of concepts from distributed artificial intelligence (DAI) to logically model an abstract system control using adaptable agent federations to induce self-organisation in a swarm type system. The knowledge acquisition and updates are handled through a modal logic of belief for team dynamics and the system as a whole evolves to learn from local failures that have minimal impact on the global system. Self-governance emerges from innate (given) action thresholds that are adapted dynamically to system demands. In this way it is shown that such a system conforms to the prerequisites that have been specified as necessary for a system to exhibit self-organisation and the intrinsic benefits of agent teamwork are established for a robust, reliable and agile system. The approach is illustrated by looking at team formation in a swarm scenario from a proposed NASA project. The Situation Calculus is used to formalise the dynamic nature of such systems with a dynamic logic implementation to reason about the ensuing programs. Subsequently the model is encoded using the Neptune scripting language and compiled to an object-oriented system for its deployment on distributed systems architecture.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.