As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we present the detailed theory and implementation on an automatic adaptive metadata generation system using content analysis of sample images with a variety of experimental results. Instead of costly human-created metadata, our method ranks sample images by distance computation on their structural similarity to query images, and automatically generates metadata as textual labels that represent geometric structural properties of the most similar sample images to the query images. First, our system screens out improper query images for metadata generation by using CBIR that computes structural similarity between sample images and query images. We have realized automatic selection of proper threshold-values in the screening module. Second, the system generates metadata by selecting sample indexes attached to the sample images that are structurally similar to query images. Third, the system detects improper metadata and re-generates proper metadata by identifying wrongly selected metadata. Our system has improved metadata generation by 23.5% on recall ratio and 37% on fallout ratio rather than just using the results of content analysis even with more practical experimental figures. Our system has its extensibility to the various types of specific object domains with inclusion of computer vision techniques.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.