As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we present a learning system with a Semantic Spectrum Analyzer to realize appropriate and sharp semantic vector spaces for semantic associative search. In semantic associative search systems, a learning system is essentially required to obtain semantically related and appropriate information from multimedia databases. We propose a new learning algorithm with a Semantic Spectrum Analyzer for the semantic associative search. A Semantic Spectrum Analyzer is essential for adapting retrieval results according to individual variation and for improving accuracy of the retrieval results. This learning algorithm is applied to adjust retrieval results to keywords and retrieval-candidate data. The Semantic Spectrum Analyzer makes it possible to extract semantically related and appropriate information for adjusting the initial positions of semantic vectors to the positions adapting to the individual query requirements.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.