As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper introduces a denotational model and refinement theory for a process algebra with mobile channels. Similarly to CSP, process behaviours are recorded as trace sets. To account for branching-time semantics, the traces are decorated by structured locations that are also used to encode the dynamics of channel mobility in a denotational way. We present an original notion of split-equivalence based on elementary trace transformations. It is first characterised coinductively using the notion of split-relation. Building on the principle of trace normalisation, a more denotational characterisation is also proposed. We then exhibit a preorder underlying this equivalence and motivate its use as a proper refinement operator. At the language level, we show refinement to be tightly related to a construct of delayed sums, a generalisation of non-deterministic choices.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.