As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A software design usually manifests a composition of software specifications. It consists of hierarchies of black box and white box specifications which are subject to refinement verification. Refinement verification is a model-checking process that proves the correctness of software specifications using formal methods. Although this is a powerful tool for developing reliable and robust software, the applied mathematics causes a serious gap between academics and software engineers. I-Mathic comprehends a software specification refinement and verification method and a supporting toolset, which aims at eliminating the gap through hiding the applied mathematics by practical modelling concepts. The model-checker FDR is used for refinement verification and detecting deadlocks and livelocks in software specifications. We have improved the method by incorporating CSP programming concepts into the specification language. These concepts make the method suitable for a broader class of safety-critical concurrent systems. The improved I-Mathic is illustrated in this paper.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.