As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Multicasting is a very important operation in high performance parallel applications. Making this operation efficient in supercomputers has been a topic of great concern. Much effort has gone into designing special interconnects to support the operation. Today's huge deployment of NoWs (Network of Workstations) has created a high demand for efficient software-based multicast solutions. These systems are often based on low-cost Ethernet interconnects without direct support for group communication. Basically TCP/IP is the only widely supported method of fast reliable communication, though it is possible to improve Ethernet performance at many levels – i.e., by-passing the operating system or using physical broadcasting. Low-level improvements are not likely to be accepted in production environments, which leaves TCP/IP as the best overall choice for group communication.
In this paper we describe a TCP/IP based multicasting algorithm that uses message segmentation in order to lower the propagation delay. Experiments have shown that TCP is very inefficient when a node has many active connections. With this in mind we have designed the algorithm so that it has a worst-case propagation path length of O(log n) with a minimum of connections per node. We compare our algorithm with the binomial tree algorithm often used in TCP/IP MPI implementations.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.