As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Analyzing microarrays data is still a great challenge since existing methods produce huge amounts of useless results. We propose a new method called NoDisco for discovering novelties in gene sequences obtained by applying data-mining techniques to microarray data. Method: We identify popular genes, which are often cited in the literature, and innovative genes, which are linked to the popular genes in the sequences but are not mentioned in the literature. We also identify popular and innovative sequences containing these genes. Biologists can thus select interesting sequences from the two sets and obtain the k-best documents. Results: We show the efficiency of this method by applying it on real data used to decipher the mechanisms underlying Alzheimer disease. Conclusion: The first selection of sequences based on popularity and innovation help experts focus on relevant sequences while the top-k documents help them understand the sequences.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.