As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The intra-operative prone position used for the posterior instrumentation of scoliotic patients has been shown to reduce the spinal deformities prior to instrumentation by 37% on average. However, the effects of the lateral decubitus position used for anterior approaches and minimally invasive techniques have not been investigated. The objectives were to characterize, model and study the biomechanics of this intra-operative posture. Several clinical indices were measured on the pre- and intra-operative radiographs of six scoliotic patients. A personalized finite element mode (FEM) was developed using the pre-op 3D reconstruction, and a three-step method was developed to simulate the lateral decubitus positioning. Two additional intra-op postures, simulating different pelvic obliquities, were also tested by varying the inclination of L5. The radiographic evaluation of the lateral decubitus position showed a significant reduction of 44% of the major curve with 18 mm of apical vertebra translation. The FEM was able to reproduce the intra-op spine geometry with no significant difference with the measured values. Simulations also showed that the pelvic obliquity had different effects on the lumbar and major Cobb angles depending on the scoliotic curve type. The lateral decubitus posture reduces significantly the scoliotic curvatures prior to instrumentation, which was dependent on the pelvic obliquity.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.