As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The use of virtual reality techniques opens up new perspectives to support and improve the puncture training in medical education. In this work a 3D VR-Simulator for the training of lumbar and ascites punctures has been extended to support the bending of the puncture needle. For this purpose the needle is designed as an angular spring model. The forces that restrict the user from bending the needle are calculated using a multiproxy technique and given to the user via a 6DOF haptic device (Sensable Phantom Premium 1.5). Proxy based haptic volume rendering is used to calculate the proxy movement. This way it is possible to integrate original CT-patient data into the rendering process and generate forces from structures that have not been segmented. The bending technique has been integrated in a VR-training system for puncture interventions and shows good results concerning update rate and user acceptance.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.