As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Proteins interact among them and different interactions form a very huge number of possible combinations representable as protein to protein interaction (PPI) networks that are mapped into graph structures. The interest in analyzing PPI networks is related to the possibility of predicting PPI properties, starting from a set of known proteins interacting among each other. For example, predicting the configuration of a subset of nodes in a graph (representing a PPI network), allows to study the generation of protein complexes. Nevertheless, due to the huge number of possible configurations of protein interactions, automatic based computation tools are required.
Available prediction tools are able to analyze and predict possible combinations of proteins in a PPI network which have biological meanings. Once obtained, the protein interactions are analyzed with respect to biological meanings representing quality measures. Nevertheless, such tools strictly depend on input configuration and require biological validation. In this paper we propose a new grid-based prediction tool that integrate of different prediction results.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.