As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A description of the hearing process is given using three-dimensional mechanical models. By means of simulation, normal, pathological and reconstructed situations can be investigated. The development of new concepts and prototypes as well as the optimization and the way of insertion of passive and active implants is facilitated by carrying out virtual tests. Mechanical models of spatial structures of the middle ear and its adjacent regions are established by applying multibody systems and finite element modeling approach. In particular, the nonlinear behavior of the elements is taken into account. For the determination of parameters such as coupling parameters in reconstructed ears, measurements using Laser Doppler Vibrometry (LDV) were carried out. The governing differential equations of motion allow the investigation of transient and steady state behavior by time integration and frequency domain methods. Optimization methods can be applied for determination of design parameters such as coupling stiffness and damping, the characteristics of actuator, the position of attachment and direction of actuation. Mechanical models enable non-invasive interpretation of dynamical behavior based on measurements such as LDV from umbo or multifrequency tympanometry. It is shown: The transfer behavior is depending on static pressures in the ear canal, tympanic cavity or cochlea. For reconstructed ears, the coupling conditions are governing the sound transfer substantially. Due to restricted coupling forces, the excitation of inner ear is limited and the sound transfer is distorted. Other sources of distortion are nonlinear coupling mechanisms. In reconstructions with active implants, the actuator excites the microphone whereby feedback effects may occur.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.