

Total hip arthroplasties (THA) can be performed with cemented and uncemented femoral components. Aseptic loosening of the joint replacement still illustrates a problem for both implantation techniques. This loosening can be caused, among other factors, by resorption of the bone surrounding the implant due to stress shielding. In order to analyse the absolute influence of the implantation technique on the bone degeneration in the periprosthetic femur, the strain adaptive bone remodelling after THA was investigated in a three-dimensional finite element (FE) simulation of a femur provided with a cemented and uncemented BICONTACT (Aesculap, Tuttlingen, Germany) femoral component. For this, a bone density evolution theory was implemented in the FE code MSC.MARC®. In these static FE simulations, the muscle and hip resultant forces represent the maximum loading situation in the normal walking cycle. To describe the mechanical properties of the bone, an isotropic material law dependent upon density was used. The situation directly after implantation without any bone ingrowth was simulated. The cemented femoral component was bonded to the bone by a homogenous cement mantle. The numerical results show that proximally, the bone resorption areas surrounding the BICONTACT stem are heavily dependent upon anchoring technique. Furthermore, no significant bone remodelling is calculated in the distal periprosthetic femur in both models.