As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In our approach, we first specify a 3D model of the image structure by segmenting a CT dataset into the respective tissues followed by assigning the acoustic properties (velocity, impedance, scattering mean and standard deviation, damping factor and packing factor). Given that model, we simulate the ray propagation, beam forming, and finally the backscattering. Due to the inhomogenities of tissue, different physical models for ultrasound simulation are required: Rayleigh scattering is applied for homogenous regions and ray tracing techniques handle abrupt changes in acoustic impedance on tissue boundaries. The latter leads to different phenomena like refraction (Snell's law), reflection and transmission (Fresnel equation). The gradients needed for these methods are precomputed for each model using a central-difference method with multiple neighbours. Absorption is calculated by the Beer-Lambert law.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.