As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In vertebroplasty, physician relies on both sight and feel to properly place the bone needle through various tissue types and densities, and to help monitor the injection of PMMA or cement into the vertebra. Incorrect injecting and reflux of the PMMA into areas where it should not go can result in detrimental clinical complication. This paper focuses on the human-computer interaction for simulating PMMA injection in our virtual spine workstation. Fluoroscopic images are generated from the CT patient volume data and simulated volumetric flow using a time varying 4D volume rendering algorithm. The user's finger movement is captured by a data glove. Immersion CyberGrasp is used to provide the variable resistance felt during injection by constraining the user's thumb. Based on our preliminary experiments with our interfacing system comprising simulated fluoroscopic imaging and haptic interaction, we found that the former has a larger impact on the user's control during injection.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.