As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
XML (eXtensible Markup Language) became in recent years the new standard for data representation and exchange on the WWW. This has resulted in a great need for data cleaning techniques in order to identify outlying data. In this paper, we present a technique for outlier detection that singles out anomalies with respect to a relevant group of objects. We exploit a suitable encoding of XML documents that are encoded as signals of fixed frequency that can be transformed using Fourier Transforms. Outliers are identified by simply looking at the signal spectra. The results show the effectiveness of our approach.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.