As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We present a new method for instance-specific algorithm configuration (ISAC). It is based on the integration of the algorithm configuration system GGA and the recently proposed stochastic offline programming paradigm. ISAC is provided a solver with categorical, ordinal, and/or continuous parameters, a training benchmark set of input instances for that solver, and an algorithm that computes a feature vector that characterizes any given instance. ISAC then provides high quality parameter settings for any new input instance. Experiments on a variety of different constrained optimization and constraint satisfaction solvers show that automatic algorithm configuration vastly outperforms manual tuning. Moreover, we show that instance-specific tuning frequently leads to significant speed-ups over instance-oblivious configurations.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.