As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Machine learning techniques are increasingly being applied to problems in the domain of information retrieval and text mining. In this paper we present an application of evolutionary computation to the area of expert search. Expert search in the context of enterprise information systems deals with the problem of finding and ranking candidate experts given an information need (query). A difficult problem in the area of expert search is finding relevant information given an information need and associating that information with a potential expert.
We attempt to improve the effectiveness of a benchmark expert search approach by adopting a learning model (genetic programming) that learns how to aggregate the documents/information associated with each expert. In particular, we perform an analysis of the aggregation of document information and show that different numbers of documents should be aggregated for different queries in order to achieve optimal performance.
We then attempt to learn a function that optimises the effectiveness of an expert search system by aggregating different numbers of documents for different queries. Furthermore, we also present experiments for an approach that aims to learn the best way to aggregate documents for individual experts. We find that substantial improvements in performance can be achieved, over standard analytical benchmarks, by the latter of these approaches.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.