As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Inverse reinforcement learning (IRL) addresses the problem of recovering the unknown reward function for a given Markov decision problem (MDP) given the corresponding optimal policy or a perturbed version thereof. This paper studies the space of possible solutions to the general IRL problem, when the agent is provided with incomplete/imperfect information regarding the optimal policy for the MDP whose reward must be estimated. We focus on scenarios with finite state-action spaces and discuss the constraints imposed on the set of possible solutions when the agent is provided with (i) perturbed policies; (ii) optimal policies; and (iii) incomplete policies. We discuss previous works on IRL in light of our analysis and show that, with our characterization of the solution space, it is possible to determine non-trivial closed-form solutions for the IRL problem. We also discuss several other interesting aspects of the IRL problem that stem from our analysis.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.