As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A transition t stops a place/transition Petri net if each reachable marking of the net enables only finite occurrence sequences without occurrences of t (i.e., every infinite occurrence sequence enabled at this marking contains occurrences of t). Roughly speaking, when t is stopped then all transitions of the net stop eventually. This contribution shows how to identify stop-transitions of unbounded nets using the coverability graph. Furthermore, the developed technique is adapted to a more general question considering a set of stop-transitions and focussing on a certain part of the net to be stopped. Finally, an implementation of the developed algorithm is presented.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.