As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Despite the remarkable progress made in synthesizing emotional speech from text, it is still challenging to provide emotion information to existing speech segments. Previous methods mainly rely on parallel data, and few works have studied the generalization ability for one model to transfer emotion information across different languages. To cope with such problems, we propose an emotion transfer system named ET-GAN, for learning language-independent emotion transfer from one emotion to another without parallel training samples. Based on cycle-consistent generative adversarial network, our method ensures the transfer of only emotion information across speeches with simple loss designs. Besides, we introduce an approach for migrating emotion information across different languages by using transfer learning. The experiment results show that our method can efficiently generate high-quality emotional speech for any given emotion category, without aligned speech pairs.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.