As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The design and the validation of an automatic plaque characterization technique based on Intravascular Ultrasound (IVUS) usually requires a data ground-truth. The histological analysis of post-mortem coronary arteries is commonly assumed as the state-of-the-art process for the extraction of a reliable data-set of atherosclerotic plaques. Unfortunately, the amount of data provided by this technique is usually few, due to the difficulties in collecting post-mortem cases and phenomena of tissue spoiling during histological analysis. In this paper we tackle the process of fusing in-vivo and in-vitro IVUS data starting with the analysis of recently proposed approaches for the creation of an enhanced IVUS data-set; furthermore, we propose a new approach, named pLDS, based on semi-supervised learning with a data selection criterion. The enhanced data-set obtained by each one of the analyzed approaches is used to train a classifier for tissue characterization purposes. Finally, the discriminative power of each classifier is quantitatively assessed and compared by classifying a data-set of validated in-vitro IVUS data.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.