As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The Sparse Matrix-Vector Multiplication kernel (SpMV) has been one of the most popular kernels in high-performance computing, as the building block of many iterative solvers. At the same time, it has been one of the most notorious kernels, due to its low flop per byte ratio, which leads to under-utilization of modern processing system resources and a huge gap between the peak system performance and the observed performance of the kernel. However, moving forward to exascale, performance by itself is no longer the holy grail; the requirement for energy efficient high-performance computing systems is driving a trend towards processing units with better performance per watt ratios. Following this trend, FPGAs have emerged as an alternative, low-power accelerator for high-end systems. In this paper, we implement the SpMV kernel on FPGAs, towards an accelerated library for sparse matrix computations, for single-precision floating point values. Our implementation focuses on optimizing access to the data for the SpMV kernel and applies common optimizations to improve the parallelism and the performance of the SpMV kernel on FPGAs.We evaluate the performance and energy efficiency of our implementation, in comparison to modern CPUs and GPUs, for a diverse set of sparse matrices and demonstrate that FPGAs can be an energy-efficient solution for the SpMV kernel.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.