As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The review of pathology test results for missed diagnoses in Emergency Departments is time-consuming, laborious, and can be inaccurate. An automated solution, with text mining and clinical terminology semantic capabilities, was developed to provide clinical decision support. The system focused on the review of microbiology test results that contained information on culture strains and their antibiotic sensitivities, both of which can have a significant impact on ongoing patient safety and clinical care. The system was highly effective at identifying abnormal test results, reducing the number of test results for review by 92%. Furthermore, the system reconciled antibiotic sensitivities with documented antibiotic prescriptions in discharge summaries to identify patient follow-ups with a 91% F-measure – allowing for the accurate prioritization of cases for review. The system dramatically increases accuracy, efficiency, and supports patient safety by ensuring important diagnoses are recognized and correct antibiotics are prescribed.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.