As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In recent years, the MVDC distribution has been proposed as a viable solution for the redesign of the shipboard Integrated Power System (IPS). Indeed, there are relevant advantages promised by the innovative DC concept, among others a desirable reduction in the electric power system size. For providing a virtual proof-of-concept of this technology, parametric and interactive 3D models can be developed by a new Computer System Integrator (CSI) software. The latter may give the possibility to quantify the expected onboard benefits (i.e. increase of pay load) already during the early-stage design, thus opening interesting evaluation since the very first stage of ship design. By exploiting the capabilities offered by the integrated design methodology, a comparative analysis between a conventional MVAC electrical distribution and innovative MVAC/MVDC hybrid systems is performed in this paper. In particular, a significant Main Vertical Zone of a large cruise ship is modeled by the CSI software for providing a detailed comparison (volumes/weights) among the power distribution architectures (MVAC vs hybrid MVAC/MVDC).
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.