As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
XCS is a complex machine learning technique that combines credit apportionment techniques for rule evaluation with genetic algorithms for rule discovery to evolve a distributed set of sub-solutions online. Recent research on XCS has mainly focused on achieving a better understanding of the reinforcement component, yielding several improvements to the architecture. Nonetheless, studies on the rule discovery component of the system are scarce. In this paper, we experimentally study the discovery component of XCS, which is guided by a steady-state genetic algorithm. We design a new procedure based on evolution strategies and adapt it to the system. Then, we compare in detail XCS with both genetic algorithms and evolution strategies on a large collection of real-life problems, analyzing in detail the interaction of the different genetic operators and their contribution in the search for better rules. The overall analysis shows the competitiveness of the new XCS based on evolution strategies and increases our understanding of the behavior of the different genetic operators in XCS.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.