As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Disease risk prediction is highly important for early intervention and treatment, and identification of predictive risk factors is the key point to achieve accurate prediction. In addition to original independent features in a dataset, some interacted features, such as comorbidities and combination therapies, may have non-additive influence on the disease outcome and can also be used in risk prediction to improve the prediction performance. However, it is usually difficult to manually identify the possible interacted risk factors due to the combination explosion of features. In this paper, we propose an automatic approach to identify predictive risk factors with interactions using frequent item set mining and feature selection methods. The proposed approach was applied in the real world case study of predicting ischemic stroke and thromboembolism for atrial fibrillation patients on the Chinese atrial fibrillation registry dataset, and the results show that our approach can not only improve the prediction performance, but also identify the comorbidities and combination therapies that have potential influences on TE occurrence for AF.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.