As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Design practice in offshore geotechnical engineering grew out of onshore practice, but the two application areas have tended to diverge over the last 30 years, driven partly by the scale of the foundation elements used offshore, and partly by fundamental differences in construction (or installation) techniques. Groups of many moderate-sized piles are replaced by a few very large diameter piles; excavation of shallow soft sediments is replaced by the use of deep skirts, transferring the effective foundation depth to the level of the skirt tips, or by forcing footings to penetrate several diameters into the seabed; underwater installation has allowed the use of ‘suction’ (or under-pressure) to aid installation of skirted foundations and caissons. Emphasis in design is focused more on capacity, paying particular attention to the effects of cyclic loading but generally with less concern on deformations compared with onshore design. These differences have led to the development of separate design codes for offshore structures, which are in most cases more prescriptive than onshore codes but are also more sophisticated in key areas. The paper describes design principles for foundation and anchoring systems ranging from shallow footings to piles and caissons, highlighting differences between onshore and offshore practice and also the link (or gap) between research and practice.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.