As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The management of follow-up recommendations is fundamental for the appropriate care of patients with incidental pulmonary findings. The lack of communication of these important findings can result in important actionable information being lost in healthcare provider electronic documents. This study aims to analyze follow-up recommendations in radiology reports containing pulmonary incidental findings by using Natural Language Processing and Regular Expressions. Our evaluation highlights the different follow-up recommendation rates for oncology and non-oncology patient cohorts. The results reveal the need for a context-sensitive approach to tracking different patient cohorts in an enterprise-wide assessment.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.