As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
There is strong evidence that multistep tumorigenesis begins with the acquisition of somatic mutations which promote genomic instability. Genomic instability is an important malignant trait because genomic instability can generate the genetic diversity that is necessary for the transforming cell to acquire increasingly variable and aggressive tumor phenotypes. Genomic instability often manifests in the form of chromosomal instability (CIN) leading to the induction of aneuploidy, a phenomenon identified by high resolution molecular cytogenetic techniques. Fluorescent in situ hybridization (FISH) and Array Comparative Genomic Hybridization (aCGH) are two high resolution molecular cytogenetic techniques that allow detection of chromosomal aneuploidyandstructuralrearrangementsoccurringinpre-malignantand malignantlesionsduringtumorprogression and invasion. These high resolution molecular cytogenetic techniques are used for genetic screening of single cells in pre-malignant and precursor malignant lesions as well as in exfoliated cells from body fluids and excreta. Consequently, molecular cytogenetic testing offers the promise of an extremely powerful method of risk assessment and early detection of cancer.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.