As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Structure-From-Motion (SFM) methods, using stereo data, are among the best performing algorithms for motion estimation from video imagery, or visual odometry. Critical to the success of SFM methods is the quality of the initial pose estimation algorithm from feature correspondences. In this work, we evaluate the performance of pose estimation algorithms commonly used in SFM visual odometry. We consider two classes of techniques to develop the initial pose estimate: Absolute Orientation (AO) methods, and Perspective-n-Point (PnP) methods. To date, there has not been a comparative study of their performance on robot visual odometry tasks. We undertake such a study to measure the accuracy, repeatability, and robustness of these techniques for vehicles moving in indoor environments and in outdoor suburban roadways. Our results show that PnP methods outperform AO methods, with P3P being the best performing algorithm. This is particularly true when stereo triangulation uncertainty is high due to a wide Field of View lens and small stereo-rig baseline.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.