As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Object recognition has traditionally been approached using primarily vision-based strategies. Recent research suggests, however, that intelligent agents use more than vision in order to comprehend and classify their environment. In this work we investigate an agent's ability to recognize objects on the basis of nonvisual proprioceptive information generated by its body. An experiment is presented in which an industrial robot collects and structures information about various objects in terms of its physical configuration. This information is then analyzed using a Bayesian model, which is used subsequently for classifying objects.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.