As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper introduces and describes a new type of wheeled locomotor, which we refer to as a “trident steering walker.” The wheeled locomotor is a nonholonomic mechanical system, which consists of an equilateral triangular base, three joints, three links and four steering systems. The equilateral triangular base has a steering system at its center of mass. At each apex of the base is a joint which connects the base and a link. The link has a steering system at its midpoint. The wheeled locomotor transforms driving of the three joints into its movement by operating the four steering systems. This means that the wheeled locomotor achieves undulatory locomotion in which changes in its own shape are transformed into its net displacement. We assume that there is a virtual joint at the end of the first link. The virtual joint connects the first link and a virtual link which has a virtual axle at its midpoint and a virtual steering system at its end. We prove that, by assuming the presence of such virtual mechanical elements, it is possible to convert the kinematical equation of the trident steering walker into five-chain, single-generator chained form in a mathematical framework, differential geometry. Based on chained form, we derive a path following feedback control method which causes the trident steering walker to follow a straight path. The validity of the mechanical design of the trident steering walker, the conversion of its kinematical equation into chained form, and the straight path following feedback control method has been verified by computer simulation.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.