As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper introduces mixed non-parametric continuous and discrete Bayesian Belief Nets (BBNs) using the copula-vine modeling approach. We extend the theory for non-parametric continuous BBNs to include ordinal discrete random variables. The dependence structure among the variables is given in terms of (conditional) rank correlations. We use an adjusted rank correlation coefficient for discrete variables, and we emphasize the relationship between the rank correlation of two discrete variables and the rank correlation of their underlying uniforms. The approach presented in this paper is illustrated by means of an example.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.