As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Up to now, only a few collective or modular robot systems have proven capable of letting separate and autonomous units, or groups of units, self-assemble. In each case, ad hoc control algorithms have been developed. The aim of this paper is to show that a control algorithm for autonomous self-assembly can be ported from a source multi-robot platform (i.e., the swarm-bot system) to a different target multirobot platform (i.e., a super-mechano colony system). Although there are substantial differences between the two robotic platforms, it is possible to qualitatively reproduce the functionality of the source platform on the target platform—the transfer neither requires modifications in the hardware nor an extensive redesign of the control.
The results of a set of experiments demonstrate that a controller that was developed for the source platform lets robots of the target platform self-assemble with high reliability. Finally, we investigate mechanisms that control the patterns formed by autonomous self-assembly.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.