As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A force field algorithm based on inclinometer readings is presented. It leads the robot to the goal by preventing it from turning upside down because of the inclination of the terrain. The method is supported by a navigation algorithm, which helps the system to overcome the well known local minima problem for force field-based algorithms. By appropriately selecting the “ghost-goal” position, known local minima problem can be solved effectively. When the robot finds itself in danger of local minimum, a “ghost-goal” appears while the true goal temporarily disappears in order to make the robot go outside dangerous configurations. When the robot escapes the possible dangerous configuration the system makes the true goal appear again and the robot is able to continue on its journey by heading towards it. Simulation results showed that the Ghost-Goal algorithm is very effective in environments with complex rugged terrain for a robot only equipped with an inclinometer.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.