As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper describes the application of the Analytical Software Design methodology to the development of a mathematically verified I2C device driver for Linux. A model of an I2C controller from NXP is created, against which the driver component is modelled. From within the ASD tool the composition is checked for deadlock, livelock and other concurrency issues by generating CSP from the models and checking these models with the CSP model checker FDR. Subsequently C code is automatically generated which, when linked with a suitable Linux kernel runtime, provides a complete defect-free Linux device driver. The performance and footprint are comparable to handwritten code.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.