As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Spacecraft operate in the unique space environment and are exposed to various types of radiation. Radiation effects can damage the on-board electronic circuits, particularly silicon devices. There is a pressing need for a remote upgrading capability which will allow electronic circuits on-board satellites to self-repair and evolve their functionality. One approach to addressing this need is to utilize the hardware reconfigurability of Field Programmable Gate Arrays. FPGAs nowadays are suitable for implementation of complex on-board system-on-chip designs. Leading-edge technology enables innovative solutions, permitting lighter pico-satellite systems to be designed. This paper presents a reconfigurable system-on-chip architecture for pico-satellite on-board data processing and control. The SoC adopts a modular bus-centric architecture using the AMBA bus and consists of soft intellectual property cores. In addition the SoC is capable of remote partial reconfiguration at run time.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.