As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Fast and accurate, non-linear autoassociators perform well in the face of unbalanced data sets, where few to no positive examples are present. In cancer diagnosis, for example, this can be convenient if only benign data is available, or if only a very small proportion of malignant data is available. As proof of concept, we apply a non-linear autoassociator to breast tumor data to predict the presence of cancer using only benign examples to train the autoassociator. Our results indicate that the non-linear autoassociator approach to automated breast cancer diagnosis is convenient and yields accurate results with minimal overhead.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.