As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents a real-time computer simulation of surgical procedures in the ear, in which a surgeon drills into the temporal bone to gain access to the middle or inner ear. The purpose of this simulator is to support development of anatomical insight and training of drilling skills for both medical students and experienced otologists. The key contributions in this application are the visualization and interaction models in the context of ear surgical simulation. The visualization is based on an existing data set, “The Visible Ear” [1], containing a unique volume depicting the inner ear in natural colours. The applied visualization is based on GPU ray casting, allowing high quality and flexible volume rendering using modern graphics card. In connection with the visualization model, different methods for optimizing the GPU ray casting procedure are presented, along with a method for combining polygon based graphics with volume rendering. In addition, different light models are presented that contribute to a realistic rendering of the different parts of the inner ear. To achieve a physically plausible drilling experience, a Phantom Omni force feedback device is utilized. The applied interaction model facilitates a realistic user experience of the response forces from the drilling tool.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.