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Gaganpreet SINGH, a Raphaëlle N. ROY b and Caroline P. C. CHANEL b

a GREYC-CNRS, Caen, France
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Abstract. In this study, a formal framework aiming to drive the interaction between
a human operator and a team of unmanned aerial vehicles (UAVs) is experimentally
tested. The goal is to enhance human performance by controlling the interaction
between agents based on an online monitoring of the operator’s mental workload
(MW) and performance. The proposed solution uses MW estimation via a classifier
applied to cardiac features. The classifier output is introduced as a human MW state
observation in a Partially Observable Markov Decision Process (POMDP) which
models the human-system interaction dynamics, and aims to control the interaction
to optimize the human agent’s performance. Based on the current belief state about
the operator’s MW and performance, along with the mission phase, the POMDP
policy solution controls which task should be suggested -or not- to the operator,
assuming the UAVs are capable of supporting the human agent. The framework
was evaluated using an experiment in which 13 participants performed 2 search and
rescue missions (with/without adaptation) with varying workload levels. In accor-
dance with the literature, when the adaptive approach was used, the participants felt
significantly less MW, physical and temporal demands, frustration, and effort, and
their flying score was also significantly improved. These findings demonstrate how
such a POMDP-based adaptive interaction control can improve performance while
reducing operator workload.

Keywords. physiological computing, adaptive interaction, workload and performance
estimation, ECG, POMDP.

1. Introduction

Human-Robot Interaction (HRI) is a branch of research devoted to comprehending, de-
signing, and evaluating robotic technologies for use by or with humans [1]. Teleoperation
is a kind of HRI [2] that can be described as the operation of a system from a distance
without the robot and human being physically or temporally co-located. Usually teleop-
erated robots perform activities under human supervision to undertake jobs in danger-
ous or inaccessible settings (e.g. space, oceans, or radioactive sites), as well as carrying
out operations such as search and rescue missions [3,4,5]. These examples imply robot
decision autonomy (e.g. navigates, take pictures, identifies targets), which is a general
implicit concept of autonomous robots.

According to [1], the simplest method to examine autonomy is to define the level of
interaction between humans and robots and the extent to which each one is independent
of the other. This idea can be illustrated by a continuous scale of autonomy ranging from
direct control, where the system is handled by the human operator, until mixed-initiative
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interaction, where it goes towards more autonomous systems collaborating with humans
on a peer-to-peer basis. Adaptive autonomy refers to autonomous systems that exhibit
some degree of flexibility in their behavior [6,7,4,3] assuming that the division of tasks
between humans and artificial agents is not fixed, but rather variable [8]. Interestingly,
Mixed-Initiative Interaction (MII) systems feature dynamic autonomy and can be seen
as a kind of adaptive autonomy interaction case.

MII is a flexible interaction framework concept that allows each agent to take charge
of the tasks in which they are specialized [9], however such roles are not necessarily im-
mutable. The problem is why, when, and how artificial agents could seize the initiative to
perform tasks that, a priori, are expected to be performed by a human agent. Interestingly,
[10] suggested to consider the notion of agents’ current capabilities in MII frameworks:
a control system would delegate a task or allow the best current agent to seize control
when necessary. It implicitly implies the use of agent monitoring techniques to detect
potential drops in agents’ performance, cognitive unavailability, or even incapacity.

Human performance and human error are the results of information processing and
are subject to variations depending on human affective and cognitive states. Workload,
a wide concept that mostly relates to the level of cognitive resource engagement from
the operator, directly impacts performance in critical settings as in Manned-UnManned-
Teaming (MUM-T) missions for instance [5,11]. This mental state is often analyzed
offline (e.g., after mission realization) using questionnaires and/or behavioral measures.
However, it can also be estimated in an online fashion using machine learning methods
applied to various behavioral and physiological features [12]. This processing pipeline is
known as physiological computing [13]. Recent literature has proposed online methods
[14,15,16] and tools [17] to compute temporal cardiac features on short time windows,
such as the Heart Rate (HR) and the Heart Rate Variability (HRV; e.g. rMSSD). These
metrics are known to be impacted by workload: an increase in mental workload has been
linked to an increase in HR and a decrease in HRV [18]. The use of such tools to estimate
the human operator’s mental workload during interaction seems to be a promising venue.

In this context, the present work paves the way towards such a Mixed-Initiative
Human-Robot Interaction (MI-HRI) control system by proposing a formal framework
to efficiently drive the interaction between a human operator (e.g., pilot) and a team of
Unmanned Aerial Vehicles (UAVs). The objective of the interaction control policy is to
improve human performance in a MUM-T context. The policy chooses to present (or not)
tasks to the operator based on an online estimation of her mental workload and current
performance. Due to the non-deterministic nature of this dynamic system, the evident
partial observability of the human mental workload, and the interest in enhancing the
human operator’s performance, this work is built upon the Partially Observable Markov
Decision Process (POMDP), an elegant framework to model and optimize sequential
decision-making under uncertainty and partial observability.

Related work. A similar POMDP-based interaction control approach was proposed for
a robotic teleoperation scenario [19], in which POMDP model parameters were approx-
imated based on experimental data. However, their model was only evaluated in simula-
tion. In [20] an elegant POMDP-based technique was suggested for estimating different
types of human operators (safe or efficient) based on the sequence of actions experimen-
tally observed. The obtained POMDP policy adapted the robot behavior (e.g. speed) in
function of the operator type estimation. In [21] a POMDP-model that anticipates a hu-
man’s state of mind during a human-robot collaboration task was proposed. The human-
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related estimation is based on human activity recognition, without physiological inputs,
which gives very relevant features in some settings, but less so in remote operation sce-
narios where the operator is not co-located with the robot. [4] proposed an integrated
POMDP-based system applied in a multi-UAV supervision scenario, where the operator
was confronted with a dual-task paradigm. The system considered a sort of human state
monitoring that accounted for the non-deterministic human behavior: the response time
to UAVs’ requests and the availability of the human operator (measured with an eye-
tracker). The human operator’s performance on a secondary task was improved while
preserving the overall system performance in the primary task. Note in almost all these
previous works, the POMDP interaction model was hand-tuned (except in [19]-[20]).

Hypothesis. Based on these previous studies, we hypothesize that adapting the interac-
tion using an approach that exploits both the human agent’s mental workload estimation
and current performance will increase the long-term performance of the human operator
while lowering their mental workload as measured through subjective, behavioral, and
physiological metrics.

Contributions. The contribution of the present work is three-fold: (i) the human state
estimation is not only based on behavioral features but also on physiological features.
In detail, this estimation is introduced as a human (mental) state observation into the
POMDP model, and its confidence is modelled as the observation function, enabling to
tackle the uncertainty inherent to such a mental state monitoring; (ii) interaction data ac-
quired in a previous study was exploited to learn the MUM-T interaction dynamics defin-
ing the POMDP state transition function. In this way, probabilities concerning mission
events and human performance are not hand-tuned; (iii) the proposed system was evalu-
ated following an experimental protocol that included 13 participants. In accordance with
the literature, the achieved results show the proposed approach to be a promising venue
for MUM-T applications. As far as the authors know, no previous work (even without
mental workload estimation) has ever proposed a similar long-term reasoning adaptive
strategy in the same human-UAVs interaction settings.

2. MUM-T scenario and previous work achievements

A MUM-T scenario was implemented, and a specific study [22] was run to character-
ize and estimate mental workload in this scenario based on physiological signals. We
describe this scenario and the former results that constitute the basis of the present work.

2.1. MUM-T search and rescue mission

The MUM-T scenario considered is a search and rescue mission where pilots have to
interact with the UAVs through the U-track application while performing the flight using
the Aerofly FS2 flight simulator (see Figures 1a and 1b) providing a virtual environment
with wreckage areas with destroyed 3D buildings to illustrate a disaster area.

The main search and rescue mission was composed by 3 sub-tasks:
- Detection and identification sub-task: It simulates the process of UAV requests

in the form of pop-ups in the U-track application (Fig. 1b). A beep sound alerted the
request arrival, and the pilot had to search in a group of 9 gray scale images if there was
any human present, and had to answer with Yes or No.
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(a) A participant. (b) The U-track application.
Figure 1. (a) A participant performing the flying task while interacting with the UAVs via the tactile tablet.
(b) The U-track application (custom interface) launched in a tactile tablet. Top right corner: detection and iden-
tification sub-task using images from the Norb database [23]. Bottom right corner: working memory sub-task.
Red zones: restricted zones to avoid. The pilot can visualize their position and UAVs’ in real-time.

- Pilot flying sub-task: Pilots had to remember the ATC heading instructions and
maintain that heading in the Aerofly simulator using the joystick. Restricted zones had
to be avoided (see Fig. 1b).

- Working memory sub-task: It mimics Air Traffic Control (ATC) instructions
played in the form of audio messages of headings to be followed. The pilot was also
required to memorize UAV communication channels and recall them in the U-track ap-
plication using a numpad (Fig. 1b).

Participants were encouraged to put the highest priority on the detection and identifi-
cation sub-task, as well as to avoid flying over restricted areas. Keeping the right heading
announced in ATC commands is followed by decreasing priority. The last priority was
given to the working memory sub-task (i.e. recall of UAV communication channels).

2.2. Human agent workload estimation

In a former study [22], 14 participants played the MUM-T scenario described above
to determine relevant physiological features for mental workload assessment. For that,
workload level (low: L, and high: H) could be varied between experimental blocks in a
pseudo-random manner through tasks’ difficulty modulation: (i) the number of commu-
nication channel inputs (i.e., 1 UAV in L vs 2 UAVs in H); and, (ii) the restricted zones
placement (i.e., far from the plane path in L vs close to the path in H). Each participant
performed 4 missions: 2 missions with a L workload level and 2 with a H level. These
levels were evaluated using a self-reported questionnaire, behavioral and physiological
measures: cerebral activity measurements with an electroencephalogram (EEG), cardiac
activity with a electrocardiogram (ECG), and oculomotor activity with an eye-tracker
(ET). Statistical analysis was conducted to determine the impact of workload levels on
features computed using a short time window (i.e. 6-second). To achieve human agent
mental workload estimation, several feature combinations and classifiers were evaluated.

The main results of this former study [22] were: i) a significant impact of mental
workload on all measures; and, ii) a higher intra-subject classification accuracy (75%)
reached using ECG features alone, or in combination with EEG and ET ones when a clas-
sical training-test pipeline was used (i.e., training and testing sets created by randomly
picking data samples among the 4 missions). However, when a more realistic procedure
was employed (i.e. training set at the beginning of the session, testing set at the end,
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mimicking a calibration for a new user), the classification accuracy generally dropped
to chance level. Indeed, when this realistic procedure was considered, inter-subject clas-
sification results based only on ECG temporal features gave the best average accuracy
results (59.8%).

These previous achievements are the basis of the present work. More specifically,
the confusion matrix of the inter-subject classifier using ECG features is used as part of
the observation function of the POMDP model that aims to control the MI-HRI system.
Moreover, pilot behavioral data and expert knowledge (i.e., pilot performance scores,
mission-related events, mental workload levels) and mission phases were also exploited
to approximate the POMDP transition function for this MI-HRI framework.

3. Adaptive Interaction Control System

3.1. Reminder on the POMDP formalism

A POMDP is a tuple 〈S,A,Ω,T,O,R,γ,b0〉, where, S is a set of states; A is a set of
actions; Ω is a set of observations; T : S×A×S→ [0;1] is a transition function denoting
the probability T (s′,a,s) = p(s′|a,s) of reaching state s′ ∈ S given the action a ∈ A is
performed in state s∈ S. O : Ω×S→ [0;1] is an observation function such that O(o,s) =
p(o|s), denoting the probability of observing o ∈Ω given state s ∈ S; R : S×A→ R is a
reward function associated with a state-action pair; γ is the discount factor; and, b0 is the
initial probability distribution over states, we have b0(s) = p(s0 = s). At each decision
time step t, the agent takes an action a ∈ A, receives an observation o ∈ Ω and updates
its belief state b ∈ Δ (Δ denotes the belief state space) using the Bayes’ rule:

bo
a(s

′) = ϕ−1 p(o|a,b) = ϕ−1 p(o|s′)∑
s∈S

p(s′|s,a)b(s) (1)

with, ϕ = ∑s′ p(o|s′)∑s p(s′|s,a)b(s). The belief state can be see as a complete infor-
mation history, as it concatenates all the action-observation sequences such as bt(s) =
p(st = s|ot ,at−1,ot−1, ...,a0).

In order to act efficiently, the POMDP solving step consists in finding a policy π∗ :
Δ→ A, which maximizes a performance criterion, the Value Function, generally defined
as the expected discounted sum of rewards:

V π∗(b) = max
π

E
π

[
∞

∑
t=0

γ t r(bt ,π(bt))

∣∣∣∣∣b0 = b

]
(2)

Interestingly, V π∗ satisfies the Bellman equation (V π∗ =V ∗): V ∗(b) = maxa∈A [r(b,a)+
γ ∑o∈Ω p(o|a,b)V ∗(bo

a)], where r(b,a) = ∑s∈S R(s,a)b(s). The optimal policy π∗ can be
extracted from the Bellman equation when it converges for all belief states. In practice,
the exact optimal solution of an infinite horizon POMDP is hard to be achieved [24].
However, recent POMDPs solving algorithms, as HSVI2 [25] or SARSOP [26] are able
to compute policies by approximating a ε-optimal value function in reasonable time.

3.2. POMDP model for adaptive interaction control and parameters learning

3.2.1. States, observations and actions.

The POMDP state set is composed by the Cartesian product between a set of state vari-
ables (S : SMs ×SHp ×SHwL ): the mission-related state (SMs ), the performance of the hu-
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man pilot (SHp ), and the workload level of the human pilot (SHwL ). In detail, we have
SMs : {f, fpr, frar, fpr rar}, symbolizing an only piloting situation, piloting and pop-up
request arrival, piloting and UAV radio channel setting request, and piloting along with
pop-up and UAV radio channel setting requests, respectively; SHp : {low perf, high perf},
expressing a low (or high) human pilot performance at the current mission phase; and,
SHwL : {low workload, high workload}, denoting a low (or high) mental workload level.

The POMDP observation set is composed by the Cartesian product between a set
of observation variables (Ω : OMs×OHp×OHwL ): the mission-related observation (OMs ),
the observation of the performance of the human pilot (OHp ), and the observation of
the workload experienced by the human pilot (OHwL ). Specifically, we have OMs : {of,
ofpr, ofrar, ofpr rar} symbolizing the observation of same mission-related state values as
for the SMs state variable; OHp : {olow perf, ohigh perf}, expressing the observation of
low (or high) human performance; and, OHwL : {obs low workload, obs high workload},
denoting the observation of low (or high) mental workload.

The POMDP action set A is defined as A = {ns pr, ns rar, ns pr rar, dn}, the which
relate to not show a pop-up request to the pilot, to not send a radio channel setting request,
to not show pop-up and not send radio channel setting request, and a do nothing action
being equivalent to a keep monitoring action, respectively.

3.2.2. State transition function.

The transition function is based on some conditional independence assumptions and on
expert knowledge. The transition function is defined as:

T (s′,a,s) =p(S′Ms ,S
′
Hp ,S

′
HwL
|a,SMs ,SHp ,SHwL)

=p(S′Hp |SHp ,SHwL ,SMs)p(S′HwL
|SHwL)p(S′Ms |a,SMs)

To learn the state transition function, all the data collected in the previous study (see
Sec. 2) were used. However, before detailing the learning method, the pre-processing
step operated on the available dataset is hereafter presented.

Dataset preprocessing. First, data were separated following workload conditions of the
previous experiment. And, for each mission and workload condition, data were epoched
into 6-second windows, regrouping all available measurements. Then, a performance
score was attributed to each 6-second window (denoted wi

s, where i represents the i-th
window). This score was defined in function of each sub-task priority and in function
of the score achieved by the participant in each sub-task given the workload condition:
how well the ATC heading command is followed while avoiding restricted zones, or if
the pilot had identified a person was present in images, or how well radio channel was
recalled. The performance score is formalized as a weighted score as:

wi
s = ω1fscore +ω2fpenalty +ω3popscore +ω4rascore +ω5cpenalty (3)

where, ∑5
j=1 ω j = 1. The fscore is the score obtained in the flying sub-task as: fscore =

∑k
n=0

1
σ
√

2π
e
(xn−μ)2

2σ2 , with xn one sample of the aircraft heading observed every 500ms in
this i-th 6-second time window (it means we dispose k = 12 samples per time window),
μ the actual heading command for this i-th window, and σ the standard deviation set to
20 degrees1; fpenalty is a penalty defined as the total number of times the pilot enters in a

1when xn was out of the range of μ±σ , the heading sample value xn was set to zero.
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restricted zone during this i-th time window, measured every 50ms, and multiplied by a
coefficient, such as: fpenalty = β ∑m

n=0 Irestricted , with m= 120, β = 0.5, and Irestricted being
the indicative function; popscore is the score obtained for a right (or wrong) identification;
rascore is the score for a right (or wrong) UAV radio channel recall; and finally cpenalty
is the penalty associated to the workload condition (high workload level being bigger).
Each sub-task score was normalized between [−1,1].

Once these scores were computed for each time window, a median score was calcu-
lated for each mission-related state and workload condition combination. These median
scores were then used to separate the data between low perf and high perf balanced sets.
We assumed then, the 6-second window as the POMDP decision time step.
Transition function learning. The p(S′Hp

|SHp ,SHwL ,SMs) probability function was ap-
proximated based on those preprocessed data partitioned in function of the workload
level, mission-related state and human pilot performance. Note, SHp is assumed to be in-
dependent from the action, because during the previous study all requests were triggered
to the human pilot as soon as they appeared. Specifically, the frequency of change of the
SHp state variable was calculated in function of the previous state value (SHp ,SHwL ,SMs ).

For the human workload level state variable SHwL , the function p(S′HwL
|SHwL) was

defined based on a different a priori knowledge. It is assumed that a low (resp. high)
workload level remains at least for 5 minutes following the experimental protocol defined
for this work (see Sec. 4.2). So that, as a POMDP decision (i.e. action) is triggered each
6s, there is a chance of 1/50 that the workload level will change, and 49/50 that it
remains the same. These probabilities are independent of the action.

The mission-related state variable SMs is assumed to be independent of the others
state variables (i.e. mission events do not depend on the workload level or the perfor-
mance). Thus, the p(S′Ms

|a,SMs) probability function was approximated by computing
the frequency of appearance of each event using all available data (i.e. all 6-second time
windows). For example, the probability that a pop-up request appears with respect to the
mission-related state was approximated by the frequency that this event appeared given
the previous mission state.

We highlight that this data-driven process indicate the transition function for the dn
action (e.g. do nothing), such as p(S′Ms

|a = dn,SMs), because in the previous study all
events where triggered to participants as soon as their appeared. To design the transition
function adapted to each action that does not show a particular request, a specific nor-
malization process was introduced. This process builds upon the fact that is less likely
to reach a mission-related state where the pop-up event is present if the action do not
show pop-up request is played. More specifically, to define the transition function for
the do not show pop-up request action (ns pr), such as p(S′Ms

|a =ns pr,SMs), we used
the p(S′Ms

|a = dn,SMs) probability function as initial support, then, the probability of the
mission-related states where a pop-up event is present (fpr and fpr ra) was set to δ , as:

p̂(S′Ms |a = ns pr,SMs) =

{
δ , if S′Ms

= fpr or S′Ms
= fpr ra

p(S′Ms
|a = dn,SMs)−δNs, otherwise

(4)

where, δ ∈ [0,0.01] and Ns is the number of mission-related states where the consid-
ered event is presented (pop-up in this example). Then, the probability function was
normalized to sum-up to one: p(S′Ms

|a = ns pr,SMs) = Φ−1 p̂(S′Ms
|a = ns pr,SMs) with

Φ = ∑S′Ms
p̂(S′Ms

|a = ns pr,SMs). An equivalent process was applied for the other actions
considering the others missions-related events.
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Table 1. Table reporting p(OHwL |SHwL ). The confusion matrix of the classifier is used as is.
OHwL

obs low workload obs high workload

SHwL

low workload 0.636 0.364
high workload 0.342 0.658

Observation function. The observation function is defined as: O(o,s) = p(OHwL |SHwL)
p(OMs |SMs)p(OHp |SHp). For the functions p(OMs |SMs) and p(OHp |SHp) we assume that
SMs and SHp are fully observable state variables, because the system knows which events
are presented in a given decision time step, and, the human performance score given the
mission phase can be computed online without any ambiguity (OMs = SMs , OHp = SHp ).

The function p(OHwL |SHwL) was defined thanks to the previous study [22]. To be
compliant with the fact that the participants of the present study may differ from the
participants of the previous study, the inter-subject pipeline (see Sec. 2.2) was chosen.
The classifier that reached the best inter-subject accuracy based on ECG features - Heart-
Rate (HR) and temporal Heart-Rate Variability (HRV) - was used, and its confusion
matrix defined the p(OHwL |SHwL) function, as shown in Table 1.

Reward function. The reward function R(s,a) is defined as the average among all 6s
windows performance scores (Eq. 3) belonging to a given state (SMs ,SHp ,SHwL ). Addi-
tionally, based on expert knowledge we have decided to slightly modify this reward with
an additional penalty in the specific case were the human-pilot faces more than one sub-
task, presenting a low performance and high workload level. The main idea here was to
incite the POMDP policy to keep participants away from high workload and low per-
forming states. We can note that this performance is independent of the action. Yet it
does not prevent the system to find a relevant policy - the POMDP policy based on the
current belief state will induce the MI-HRI system to future states that favor gains.
Offline policy generation. The POMDP model was solved using the SARSOP algo-
rithm [26] (γ = 0.95 and ε = 0.01). The policy was executed during the experiment.

4. Materials and Methods

4.1. Participants

Thirteen healthy volunteers (11 males; 25.8 y.o. ± 3.5) gave their written consent for
anonymous data collection storage and processing. No previous piloting experience from
participants was required. The experiment was authorized by the local ethical committee
(CER Univ. Toulouse ID 2019-137).

4.2. Experimental Protocol

The experimental protocol was designed to evaluate the POMDP-based interaction con-
trol policy with regards to human performance and mental workload management when
compared with a non adaptive interaction system. To that end, all developments were
integrated and played online: extraction and processing of physiological features, moni-
toring of human mental state, and adaptation of the interaction. Two mission runs were
counter-balanced between participants, one where the POMDP-based adaptive policy
was played, and one where no adaptive action was taken. In the non adaptive condition,
all UAV and system requests were triggered to the human pilot as soon as they appeared.

Regarding the experimental protocol (Fig. 2), first the participants were invited to
give their informed consent. Then, they performed a training session to familiarize them-
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Figure 2. Experimental protocol timeline. C: consent form signature, T: task training, E: ECG set up, R: resting
state (ECG baseline), L: low workload block, H: high workload block. Mission runs, with or without adaptive
interaction policy were counter-balanced between participants; workload blocks were counter-balanced within
mission runs with either the L-H-H-L or the H-L-L-H pattern. Note an experiment took around 45 minutes.

selves with the task - incl. the management of ATC commands - and were equipped with
the ECG device. A mission block started after a resting block (1 min), which allowed
us to record the ECG baseline to compute normalized HR and HRV features. During a
mission run, workload was manipulated per blocks of 5 minutes: the variation followed
L-H-H-L or H-L-L-H patterns, and was pseudo-randomized between participants.

4.3. Data Acquisition, Analysis and Policy Execution

Subjective feedback. At the end of each workload block, participants were asked to
answer the Instantaneous Self Assessment (ISA) of workload [27], and at the end of each
mission the NASA-TLX [28] was given to evaluate the quality of interaction condition.
Participants were also asked how engaged they had felt during the previous mission using
a home-made scale and the question: ”How engaged and focused were you?”

Behavioral features. The scoring for pilot performance used here was computed fol-
lowing the weighted score defined in Eq. 3 as explained in Sec. 3.2. This score was then
translated as a POMDP observation variable OHp (low perf or high perf ) following the
same median scores values obtained for database preprocessing when the state transition
function was approximated.

Physiological features. Physiological data were acquired and recorded thanks to Lab
Streaming Layer (LSL) streams2. Streams were created and published in a local net-
work, to perform an online processing of the features, and also to record them with
LabRecorder3. The ECG acquisition device (Faros eMotion 360°) can be configured to
provide online ECG raw data and RR intervals (based on R-peak detection), which were
broadcasted using a Bluetooth protocol. The Faros Streamer application4 allows stream-
ing these data through LSL. Additionally, a script based on a library proposed by Aura
Healthcare5 was used to compute online ECG temporal features, as Heart-rate (HR) and
Heart-rate Variability (HRV), from RR intervals. At each 6-second non-overlapping win-
dow, HR and HRV features were computed and normalized with respect to the 1-minute
resting block. They were then provided as feature vector to the classifier for mental work-
load estimation. The chosen classifier following the former work was a Linear Discrimi-
nant Analysis (LDA) with shrinkage of the covariance matrix. The output of this classi-
fier is the value of the observation variable OHwL used in the model.

2https://labstreaminglayer.readthedocs.io/index.html
3https://github.com/labstreaminglayer/App-LabRecorder
4https://github.com/bwrc/faros-streamer-2
5https://github.com/Aura-healthcare/hrv-analysis
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POMDP policy execution. The POMDP policy solution was executed in parallel with
other applications using a dedicated script. Starting from the initial belief state, the action
to be performed is computed following the policy and launched. Then, 6 seconds after the
action execution, the observation o = (OMs ,OHp ,OHwL) is received which is used to up-
date the belief state with the help of Bayes’ rule (Eq. 1). It works as an online monitoring
of the human (mental) state. Note that during the experiment the POMDP policy does not
observe the workload being manipulated, it receives the label OHwL predicted as output
of the classifier, and knows the frequency of appearance (each 5min) defined through the
transition function. Then, based on the current belief state, the POMDP action is chosen
following the policy again, and after 6 seconds a new observation is received, and so on.

4.4. Statistical Analysis

In order to assess the impact of the experimental conditions, statistical analyses were per-
formed on all data using the Statistica software. Subjective measures acquired through
the NASA-TLX questionnaire were analyzed for each scale using paired t-tests when the
data were normally distributed, and using a Wilcoxon test when they were not. All other
measures as ISA questionnaire, mean performance and mean cardiac features HR and
HRV were analyzed using two-way repeated measure ANOVAs (i.e 2 load conditions
× 2 types of interaction: adaptive vs non-adaptive) after homoscedasticity and normal-
ity assumptions verification. Tukey post-hoc tests were performed for each statistically
significant main effect and interaction effect.

5. Experiment Results

5.1. Adaptive interaction impact on subjective feedback.

Participants’ workload as reported through the ISA questionnaire was significantly lower
in the low workload condition than in the high one, and lower in the adaptive condition
compared to the non-adaptive condition (respectively F(1,12) = 30.96, p-value < 0.01,
η2 = 0.72, and F(1,12) = 79.14, p-value < 0.01, η2 = 0.87). Moreover, the interac-
tion between workload and adaptive condition was significant, with a stronger increase
in reported workload with workload in the non-adaptive condition than in the adaptive
one (F(1,12) = 8.21, p-value < 0.05, η2 = 0.41). These results are illustrated in Fig.
3a. Regarding participants’ workload scales from the NASA-TLX questionnaire, their
reported mental demand, physical demand, temporal demand, effort and frustration sig-
nificantly decreased with the adaptive interaction policy (respectively t = 5.17 with p-
value < 0.001, t = 2.24 with p-value < 0.05, W = 2.00 with p-value < 0.001, t = 4.56
with p-value < 0.001, t = 2.99 with p-value < 0.05). No significant effect was found for
reported performance and engagement (Fig. 3b).

5.2. Adaptive interaction impact on performance.

Participants’ mean performance only revealed a significant decrease with workload
(F(1,12) = 56.84, p-value < 0.01, η2 = 0.52): participants had a better score in the
low workload condition than in the high one (Fig. 4a). Regarding participant’s mean
flying score only, it was significantly lower in the high workload condition than in the
low workload condition (F(1,12) = 56.84, p-value < 0.05, η2 = 0.32), as well as sig-
nificantly higher in the adaptive than in the non-adaptive condition (F(1,12) = 136.55,
p-value < 0.01, η2 = 0.53).
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(a) Subjective workload via ISA.
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(b) Subjective workload via NASA-TLX.

Figure 3. Subjective results (***: p-value < 0.001, **: p-value < 0.01, and *: p-value < 0.05). LW/HW: low
(resp. high) workload. AIC: adaptive interaction control.

5.3. Adaptive interaction impact on physiological features.

Participants’ normalized HRV significantly decreased with an increase in workload
(F(1,12) = 904.92, p-value < 0.05, η2 = 0.43) - see Fig. 4b. No significant effect of
adaptive condition or interaction with workload was found. Moreover, even though par-
ticipants’ normalized HR was higher in the non-adaptive than adaptive conditions, and in
the high workload than in the low workload conditions, these effects were not significant.

6. Discussion

This study strongly differs form earlier 2000’s studies [8,29] that proposed reactive and
threshold-based adaptations that did not consider a long-term performance reasoning
strategy, as our POMDP-based approach does. Based on the belief state, the POMDP
policy decides which task should be triggered to the human operator in order to maxi-
mize her long-term performance. In this sense, the belief state can be see as an online
monitoring of the human (mental) state: it estimates the couple workload-performance.
This study also improves similar previous approaches [21,4,20,19,8] that have proposed
adaptive interaction frameworks based POMDPs and human (mental) state estimation.
Interaction data from a former experiment [22] were used to learn the POMDP model
dynamics, rather than manually tuning it such as previously done by [4], or approached
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(a) Flying Score.
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(b) Normalized Heart Rate Variability.

Figure 4. Behavioral and physiological results (**: p-value < 0.01, and *: p-value < 0.05). LW/HW: low
(resp. high) workload. AIC: adaptive interaction control.
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by simulation as in [21]. Also, the experimental campaign presented in this study allowed
to obtain participant’s feedback to evaluate the approach, unlike [19].

The subjective and behavioral results have confirmed the ability of the implemented
adaptive interaction behavior to mitigate mental demand, physical demand, temporal de-
mand, frustration and effort. Indeed, in accordance with the literature [8,30], the results
indicate that participants have experienced significantly less workload in adaptive inter-
action condition then in non-adaptive condition, as evaluated using the ISA and NASA-
TLX questionnaires. Moreover, the flying score revealed that participants performed sig-
nificantly better in conditions involving adaptive interaction control.

The expected general effect of workload on cardiac features was present, but only
significant for the normalized HRV measure that decreased with an increase in work-
load in accordance with the literature [16,18]. Contrary to our expectations, no signif-
icant effect of the adaptive condition was found on cardiac features. This could reflect
a high engagement level from the participants in the adaptive condition which helped
them achieve a high performance. Following [31], the fact that cardiac features were not
modified by the adaptive condition while subjective (decreased reported workload) and
behavioural metrics (increased flying score) indicated a lowering of mental workload
may clearly reflect that participants maintained their engagement during the task. This is
a very positive point for adaptive interaction since no disengagement from participants
was observed.
Limitations. Possible limitations of this work are: the low number of participants, their
lack on piloting experience, the use of a wearable, although not invasive, ECG device
and the few variables considered in the POMDP model. Note, the binary variables used
may prevent the model to capture more fine-grained differences in performance and in
workload.

7. Conclusion and Future Work

This work proposes a framework to drive the interaction between a human operator and
a team UAVs in a MUM-T scenario. The contribution is the design and the evaluation of
a long-term interaction strategy which favors human performance. The design was pos-
sible thanks to model parameters learned from available interaction data and to an online
behavioral and physiological-based human (mental) state monitoring. The results reveal
that: (i) the participants felt significantly less load, and an improved quality of interaction
when the proposed adaptive approach was used compared with a non-adaptive system;
(ii) participant’s flying score was also improved. However, in MUM-T scenarios a focus
on team performance may be preferred. Hence, further work is needed to include UAVs’
states and scores into the POMDP reward function to improve the expected team perfor-
mance. The classification pipeline should also be improved, for instance thanks through
the use of additional sensors, or thanks to transfer learning and an online POMDP defini-
tion and solving. Yet this study demonstrates how adaptive interaction can improve per-
formance while reducing operator workload, hence paving the way for better MUM-T.
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