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Abstract. This study applied Synthetic Aperture Radar Interferometry (InSAR) to 
estimate terrain displacements using four Digital Elevation Models (DEMs). The 
InSAR workflow was implemented in a region located at southwestern of Colombia. 
The radar images were processed using ESA’s SNAP Toolbox, varying a DEM at the 
stages back-geocoding, topographic phase removal, and geometric correction.  A SLC 
IW TOPSAR Sentinel-1 A/B radar images were analyzed between October 2014 and 
November 2016 for S1-A and between October 2016 and March 2017 for S-1B. Four 
SLC pairs were selected with the smaller perpendicular and temporal baseline for the 
displacement estimation. The work process implemented was, co-registering, 
interferogram formation, topographic phase removal, filtering, unwrapping phase and 
geocoding. The DEMs, SRTM3 (3 arc-second resolution), SRTM1 (1 arc-second 
resolution), PALSAR-RTC data and interpolation of contour lines at the scale of 1:25K 
(Topo-map) were used. Exploratory, paired-means and ANOVA analysis allowed to 
compare the distributions. Likewise, Principal Components Analysis method allowed 
establishing the relationship between the InSAR parameters - phase, coherence, 
unwrapped phase, and the displacement -. This analysis was complemented by Logistic 
Regression methods and Weight of Evidence. As a result of this study, we confirmed 
an inverse relationship between the unwrapped phase and displacement. Also, the 
coherence estimated from the four DEMs is highly correlated with the Colombian 
Geological Service landslide inventory. By WofE analysis, we found that coherence 
values between 0.43 and 0.67 are significantly related to landslide inventory, as well 
as displacement values between 0.14 and 0.19 m. 

Keywords. Synthetic aperture radar interferometry (InSAR), digital elevation 
model (DEM), phase, coherence, displacement, binary logistic regression, landslide 
inventory. 

1. Introduction 

As landslides are natural hazards causing casualties, infrastructure damage, and 
economic losses, it is important to map them by using Earth Observation, specifically 
SAR data. SAR is an active microwave device that records the electromagnetic echo 
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backscattered from the Earth surface and puts it in a 2D image map, whose dimensions 
are the sensor–target distance (slant range or Line of Sight direction (LOS)), and the 
flight direction (azimuth) [1]. A radar signal contains amplitude and phase data. The 
phase information from SAR images can be exploited using the InSAR approach, a 
method designed to measure changes in signal phase over time [2]. 

When two SAR images from slightly different viewing angles are combined 
(interferometric pair), their phase difference can be used to generate a digital elevation 
model (DEM) and to monitor terrain changes with a precision of half a wavelength [3]. 

The phase difference is the basis for the calculation of the interferometric phase. The 
SAR interferogram is the complex image formed by cross-multiplying the two SAR 
images, a map of relative changes in the distance between the satellite and the earth 
surface, expressed as phase differences. Therefore, the phase difference is a function of 
the relative elevation and the altitude of ambiguity [4]. 

The simplest way to estimate small motions consists of choosing an image pair with 
a minimal baseline so that the first term (topographic phase) of the phase difference is 
smaller than the second. The baseline is the distance between the two satellites (or orbits) 
so, the smaller the baseline, the lower the topography contribution to the phase [5]. 
Terrain Observation by Progressive Scans (TOPS) acquisition mode has a wide swath 
coverage. The Wide Swath Mode (IW) image mode provides swath widths of 250 and 
400 km at both ground range and azimuth resolution (5 x 20 m, and  20 x 40 m) [5] 

Coherence is a similarity measure between two images that form an interferogram. 
It compares the complex values of the amplitude and the phase of both images combined 
into a normalized value, ranging from 0 to 1 [6]. Interferometric coherence gives some 
indication of the land cover type (i.e., water bodies show low coherence, agricultural 
fields show a moderate coherence; rocks and artificial targets show high coherence).   

The binary logistic regression (BLR) is one of the statistical methods used for 
assessing landslide susceptibility [7–10]. The application of BLR requires a landslide 
inventory like the dependent variable and triggering parameters as independent variables. 
The independent variables can be chosen by principal components analysis (PCA) in 
order to reduce the multicollinearity [11]. 

The objective of this study is to select a DEM for estimating the interferogram 
outputs - phase, coherence, and unwrapping phase – using InSAR workflow for the 
estimation of terrain displacement. Previous studies have demonstrated the usefulness of 
this methodology to map and monitor the area affected by ground deformation [12]. 

2. Methodology 

2.1. InSAR processing flow 

The InSAR workflow to estimate displacements, on ESA’s Sentinel Application 
Platform (SNAP) [13], is shown in Figure 1. The process where a DEM is required did 
highlight. DEM is used in the InSAR workflow for the processes of co-registration, 
correcting SAR geometric distortions, removing the topographic phase, and 
georeferencing the InSAR products in map coordinates. 

• Data was downloaded from Scientific Data Hub-Copernicus from October 2014 
till March 2017. Only four pairs of images were selected for this study, with 
minimal perpendicular baseline [14]. The multi-temporal approach, to get better 
accuracy in the results, will be treated in another stage of this research. 
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• In SNAP toolbox: First, orbital state vectors were applied over the master and 
slave scene using precise-orbit ephemerides. Second, a co-registration onto a 
common master image and a geocoding to convert coordinates from radar to 
map geometry. Third, an interferogram is formed without the flat-earth phase 
and with the estimation of coherence. Then a spatial subset was created to 
reduce the computational time, followed by removing the phase component due 
to the variation of the range distance across the SAR image [15]. Next, the phase 
noise is reduced using an adaptive filter [16]. Phase unwrapping, to estimate 
displacements, is carried out externally applying the network-flow phase-
unwrapping algorithm (SNAPHU) [17]. The InSAR outputs are geocoded in a 
map coordinate system (WGS84) and exported to GeoTIFF format. 

• InSAR products obtained in SNAP and the SIMMA landslide inventory from 
Colombian Geologic Service were post-processed in SAGA and R software for 
exploratory statistical analysis. Finally, a logistic regression analysis is run on 
Arc-SDM (Spatial Data Modeller for ArcView 3.2) package [18]. 

 
Figure 1. InSAR workflow to displacements estimating in SNAP toolbox. 

2.2. Study area 

The study area is in western Colombia (2°9’37” north and 76°47’39” west, and 2°28’12” 
north and 76°27’56” west). Figure 2 shows the areas whose DEM elevation varies 
between 1004 m and 3698 m above sea level (a.s.l). This region is often affected by 
landslides. The landslide inventory (LSI) from Colombian Geologic Service (CGS) is 
displayed as points, containing 107 events: slides (78%), fall (13%), creep (6%), and 
flow (3%). 
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Figure 2. Regional and local localization in the study area. 

2.3. DEMs analyzed 

We used DEMs SRTM3, SRTM1, Palsar-RTC data, and Topo-map at medium scale 
(Table1). PALSAR-RTC data correspond to the ALOS-1 radiometric terrain corrected 
products distributed by ASF-DAAC earth observation service. The Topo map DEM was 
obtained by ‘spline interpolation’ method [19], [20] on SAGA software and took as basis 
contour lines at a scale of 1:25K. 

 

Table 1. Characteristics of medium resolution DEMs used for InSAR processing. 

DEM Source Resolution (m) or scale 

3 arcsec SRTM Auto download 90 

HGT 1 arcsec SRTM Auto download 30 

PALSAR_RTC_hi2 ASF’s Data Portal 12.5 

TOPO map Colombian Geographic Institute 1:25000 

2.4. ESA’ Sentinel 1 radar images 

A stack of S1 IW TOPSAR 3  images was analyzed (Table 2). The stack has VV 
polarization and an average incidence angle of 34°. Sentinel-VV polarization was most 
frequent than VH in the period of analysis. 

 

Table 2. The main feature of ESA’s Sentinel 1 stack in the study area. 

Platform Number of available 

images 

Acquisition date Ascending Descending 

Sentinel-1A-IW 90 20th Oct 2014 / 9th Nov 2016 47 43 
Sentinel-1B-IW 34 3rd Oct 2016 / 20th Mar 2017 18 16 

                                                           
2 Dataset: ASF DAAC 2010, ALOS-1 PALSAR_Radiometric_Terrain_Corrected_high_res; Includes 

Material © JAXA/METI 2007. 10.5067/Z97HFCNKR6VA. 
3 Copernicus Sentinel data 2014. Retrieved from ASF DAAC 29 April 2017, processed by ESA. 
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The S1 SAR images selected for deformations estimation are related in Table 3. 
Interferograms with a perpendicular baseline less than 30 m are easy to unwrap, but they 
have high sensitivity to phase noise and atmospheric effect [14]. The interferograms with 
minimal baseline and in the ascending mode were considered in this study. 

 

Table 3. Sentinel-1 SLC SAR images for InSAR processing. 

Master SAR image Slave SAR image Bp (m) Bt (days) 

S1B-96E4 (Asc) {20161120} S1B-B4EA (Asc) {20170107] 6.2 48 
S1A-E1B8 (Asc) {20160530} S1A-963E (Asc) {20160611} 2.51 12 
S1B-9502 (Asc) {20170107} S1B-48A7 (Asc) {20170131} 4.65 24 

S1B-39AA (Desc) {20161022} S1B-7CF0 (Desc) {20161115} 5.08 24 

3. Results and discussion 

3.1. Effect of a DEM on InSAR processing 

The interferometric pairs of Table 3 were obtained by varying the DEMs indicated in 
Table 1. We present the results obtained for the second interferometric phase; they cover 
the study area with a minimum perpendicular and temporal baseline. The smaller the 
baseline, the lower the topography contribution to the interferometric phase [5]. First, a 
random sample of InSAR components of about 1000 points was extracted. The statistical 
distributions in a plot way for phase, coherence, unwrapped phase, and deformation are 
shown in Figure 3. A T-Test proved that the interferograms mean it is different at a 
significance level of 0.001, only for unwrapped phase and displacement. This means that 
DEM had a significant impact on wrapped differential interferograms [21]. 

 
Figure 3. Boxplot chart of InSAR components (random sample). 

 
The extraction of InSAR components for the CGS Landslide Inventory is 

represented in Figure 4. T-Test showed significant differences in the mean of InSAR 
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coherence between Palsar-RTC data against the other DEMs, due to better spatial 
resolution [22]. Also, the unwrapped phase showed significant differences at a 0.001 
significance level using any DEM. This can be explained due to DEM inaccuracies [21]. 

 

Figure 4. Boxplot chart of InSAR parameters (SIMMA landslide inventory). 

3.2. Multivariate analysis 

PCA gave us the relationship between InSAR components (Figure 5) [23]. We found a 
perfect relationship between coherence obtained with SRTM3 and SRTM1 DEM (r=1). 
In the unwrapped phase, the correlation also was high between the two SRTM DEMs. 
The InSAR coherence correlation between SRTM3 and SRTM1 DEMs compared with 
Topo map is high (r=0.74), but low compared with Palsar-RTC data (r=0.24). 

3.3. Logistic regression 

For the landslide susceptibility modeling, logistic regression was applied with a layer of 
binary type points, where 0 is stable, and 1 is an unstable event obtained from the CGS 
landslide database. Landslide inventory was partitioning using a ratio of the samples in 
the training and testing datasets of a 70:30 proportion. The results were as following. 

• For InSAR components from DEMs SRTM3, SRTM1, and Topo-map, only 
coherence values had a significant relationship (p-value<0.05) with the events. 

• Palsar-RTC data only had a significant effect on the unwrapped phase (p-
value=0.02). 

• The WofE analysis gave InSAR coherence values between 0.43 and 0.67 with 
the highest association to landslide events with DEMs SRTM1, SRTM3, and 
Topo-map. 
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• Displacement values between 0.14 and 0.19 m from interferograms formed with 
the DEMs SRTM1 and Topo-map had the highest relationship with landslides. 
Displacements estimated are in LOS direction. 

• The likelihood range obtained with logistic regression posterior-probability of 
Arc-SDM toolbox was low. Thus, it is necessary to include other variables for 
building the landslide detection model, i.e., PolSAR and PS-InSAR approach. 

Finally, those above was checked with the Tukey test with level confidence of 95%. 
For InSAR-coherence, all clusters were grouped around 0: meaning no significant 
differences in coherence for any DEM. However, the opposite was found in the 
unwrapped phase and displacement varying the DEM, except between SRTM3 and 
PalsarRTC data. 

 
Figure 5. PCA of InSAR components for landslide events. 

4. Conclusions 

For statistical distribution, InSAR phase has Gaussian behavior, while InSAR coherence 
and unwrapped phase have a positive skewness with a right tail (high values but low 
frequency). InSAR displacement showed negative skewness, especially with SRTM3, 
SRTM1, and Topo-map. 

Under the null hypothesis of correlation coefficient equal zero for the independence 
assumption, the PCA gave that all InSAR components were independent due to the 
specific location of variables in the correlation circle. However, the correlation between 
the unwrapped phase and displacement had better representation on the first factorial 
plane. 

This study showed a perfect inverse linear relationship between the unwrapped 
phase and displacement in the whole experiment using any DEM. 

We only had significant InSAR mean differences for unwrapped phase and 
displacement in LOS direction. These due to spatial resolution and DEMs inaccuracies. 

These results ratified the potential of SRTM1-DEM for the processes of co-
registration, removing the topographic phase, and geocoding in an InSAR workflow 
processing, especially for InSAR coherence. 
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