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Abstract. Experiments have shown that the angle of friction obtained in the 
consolidated-drained test of normally consolidated clays is related, in some way, to 
the plasticity index or the liquid limit. In this paper, it is demonstrated that this 
relation shows up because of the discrete nature of clays, whose properties become 
clear when they are modeled as a packing of spheres. When the diagram of 
contacts is mapped into the Casagrande’s diagram of compression, four intervals 
show up: one for a dense packing, one for a loose packing, and two impossible; 
with two points for the critical state. In general, a packing has the same void ratio 
for two different angles of contact, one dilatant and another contractive. As a 
normally consolidated clay sample is contractive, it is demonstrated that the angle 
of friction is independent of the initial water content. But, for a clay geological 
formation, the friction angle varies according to the features of each layer, 
following the equation of dense critical state, which fits very well with the 
experimental data. 
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1. Introduction 

It is a well-established fact that the strength behavior of fine-grained soils is similar to 
that of sands. Like loose sands, normally consolidated and lightly overconsolidated 
clays show a gradual increase in shear stress as the shear strain increases until the 
critical state shear strength is attained, and the volume compresses until a critical state 
void ratio is reached. Like dense sands, heavily overconsolidated clays show a rapid 
increase of shear stress up to a peak value and then decrease to reach the critical state 
shear strength, and the volume expands until a critical state void ratio is reached [1]. 
Because of this similarities, it is concluded that the theory of packings, using to study 
sands, is applicable to clays, mainly for a normally consolidated clays. To do that, the 
real clay structure must be known. 

By using the scanning electron microscopy, the fabric of clay soils has become 
clear. According to Yong and Sheeran [2], clay soils are an assemblage of aggregates 
called peds. A ped in turn is an assemblage of small aggregates called clusters. A 
cluster is an assemblage of submicroscopic aggregates called domains. A domain is an 
assemblage of clay particles. Other authors classify the clay soil structure into two 
classes: elementary particle arrangements, and particle assemblages. The first includes 
clay, silt or sand interactions; and the second refers to units with definable physical 
boundaries and specific functions, consisting of elementary particle arrangements, 
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clothed or linked by connectors [3]. In the present work, it is established that, whatever 
the complexity of its structure, clays can be represented as packings of ordered spheres. 

2. Characteristics of packings of spheres 

The voids content of any soil is the simplest manifestation of its granular structure.  
Among other quantities, the void ratio, e, and the specific volume or voluminosity, 
υ=1+e, are the most useful. In particular, whatever the packing type, it is always 
possible to choose a parallelepiped as a primitive cell whose vertices are the centers of 
eight neighboring spheres, not necessarily all in contact (Figure 1a). The volume of the 
parallelepiped is a known quantity, and the sum of the eight spherical triangles defined 
by the faces of this element is equal to the volume of the solid sphere of diameter D. 
Therefore, the voluminosity of a packing of spheres, υφ, in given by: 
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where a, b, and c are the lengths of the edges of the parallelepiped, α, the acute angle 
formed by the two edges of the horizontal face, and ς, the azimuthal angle of the non-
horizontal edge (Figure 1b). 

 

Figure 1. a) Basic packings of spheres, b) General polyhedral representation of a packing of spheres, c) 
Rhombic or two-dimensional compression model, d) Axial rhombohedron or three-dimensional compression 
model. 

 
The mechanical behavior of granular materials can be modeled by properly 

orienting the packing, regarding that strain is due to the movement of the spheres with 
respect to their neighbors at points of contact. The rhombohedron is one of the 
crystallographic cell that meets this requirement. The twelve edges of this polyhedron 
are of the same length, and equal to the diameter of the sphere D (Figure 1a). The shear 
strain is appropriately described by a horizontal-face rhombohedron, in which 
a=b=c=D, and ζ=β (Figure 1b); the two-dimensional axial compression, by a rhombus, 
in which a=b=c=D, and ζ=θ (Figure 1c), and the three-dimensional compression, by a 
rhombohedron with the major diagonal being vertical (Figure1d), where α=60°, 
a=b=D√3sinθ, c=D and ζ=θ. The contact lines are defined by β and θ. 

Although it is valid for any kind of packing, Eq. (1) is plotted in (x, e) plane for the 
contact circumference of a rhombic cell (Figure 2a). In this diagram, the dual character 
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of the packings becomes evident, since for two values of the angle of the line of contact 
there is a single value of the void ratio (Figure 2b). An interpretation considers the two 
angles of the contact line describing the active state only. In this case, the analysis of 
Eq. (1), as a path, shows that the graph has two branches: one ascending and other 
descending, reaching a maximum value, related to the loosest state of the packing, 
when β=0°, for the prismatic cell; θ=45°, for the rhombic cell (Figure 2b), and 
θ=arccos(1/√3)=54.74°, for the axial rhombohedric cell. In terms of the volume change, 
the first branch describes a dilatant packing and the second, a contractive packing. 

When the critical state in the (e, σ) plane, called compression diagram (Figure 2d), 
obtained from the stress-strain of the two extreme states of sand (Figure 2c), is mapped 
into the (x, e) diagram (Figure 2b), the meaning of the critical state result evident: it is 
different from the loosest state, as assumed by some authors, and is defined by two 
points. A mapping of the respective paths, reveals that the path of the void ratio is 
divided into four sections: one dilatant, one contractive and two impossible. The 
critical state of packings is given by the following law: edilatant = econtractive. 

 

Figure 2. Mapping of packing and compression parameters: a) Circumference of contact between spheres. b) 
e-θ or e-x plane, showing the duality of the rhombic packing. c) Stress-strain curves for dense and loose 
sands in the triaxial compression test. d) Casagrande’s diagram of compression [4]. 

3. Contact forces in packings 

In a dilatant packing, stresses are transmitted as chains of forces [5, 6]. For instance, in 
a dilatant rhombic packing of horizontal diagonal S, the forces of contact that concur to 
a sphere in the one-dimensional compression test have the magnitude: F=P/[2cosθ] or 
F=Q/[2sinθ], where P and Q are vertical and horizontal forces, respectively; which are 
related to the principal stresses by P=σ1S and Q=σ3Stanθ. Eliminating F, the 
relationship: σ3=σ1 tan2θ is obtained [5]. Likewise, for a rhombohedric packing, 
2σ3=σ1tan2θ is found. In both cases, the force F is one link of the chain of contact 
forces. Since σ3=σ1K0, the relationships K0=tan2θ and K0=tan2θ/2 are obtained, 
respectively. From the limit equilibrium of an infinite slope of dense granular soil, the 
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relationships cot2θ=1+2tan2φ and 2cot2θ=1+3tan2φ, are attained, respectively [7], 

where φ is the peak friction angle. Eliminating the angle θ yields the following 

equations, for the rhombic and the rhombohedric packings, respectively: 
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Figure 3 compares Eq. (2) with the experimental friction angle of the 

consolidated drained test on several normally consolidated and slightly 

overconsolidated clay soils, showing a good correspondence. 

 

Figure 3. The coefficient of lateral pressure at rest as a function of a) the plasticity index, for a clay [8], and 

b) the consolidated drained friction angle, for several clays (Compiled by Holtz and Kovacs [9]). 

 

In a contractive packing, the forces of contact acting on a sphere are given by 

F=P/[2cos(θ-δ)] or F=Q/[2sin(θ-δ), where δ is the angle of obliquity. Since the 

transmission of the forces occurs by the slip of a sphere over another, the plane on 

which acts the force F is perpendicular to the contact line; so that: P=σ1S and 

Q=σ3Stanθ. Then, σ3=σ1cotθ tan(θ-δ). This expression is similar to the equation 

obtained by Rowe [10]. It follows that, for a packing to be in contractive state, the 

following condition must be fulfilled: θ ≥ 45°; and, for the same packing to be in active 

state, the condition δ > 0° must be fulfilled. Under these conditions, the failure state is 

reached when the stress ratio is a minimum. Besides, the ultimate angle of obliquity is 

the friction angle at the critical state; that is, δ = φcs, and σ3=σ1 tan2(45°- φcs/2).  

4. The packing of fine grained soils 

The fine-grained soil fabric, proposed by Yong and Sheeran [2], idealized in figure 4a, 

may be described in terms of the voluminosity of the packing of each unit as follows: 

υ=V/Vpe, υ1=Vpe/Vcl, υ2=Vcl/Vdo, υ3=Vdo/Vs, where V, Vpe, Vcl, Vdo, and Vs, stand for the 

volumes of the total sample, the ped, the cluster, the domain, and the clay particle, 

respectively. The progressive substitution of these quantities yields the fundamental 

law of clays: υ=υ1υ2υ3.   

The fabric proposed by Collins and McGown [3] may be represented by a unique 

flocculated packing, arranged through connectors along the edge of a cell, as shown in 

Figure 4b. The sphere submerged in water is described by the ratio: χv= (Dv/D)3 = 
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(1+2av/D)3, where av is the thickness of the double layer (Figure 4c). The sphere of 
contact, that entails the shape and angularity of a particle, may be described by the 
ratio: χa = (Dc/Dv)3, where Dc is the diameter of contact between two neighboring 
particles (Figure 4c). The total volume for a packing of equal size spheres is given by: 
V= (1+N)3abc sinα cosζ, where N is the number of particles at the edge, except those of 
the corner of the cell.  The volume of the structural spheres is: Vsσ=π/6D3(1+3N). 
Having account of the particle ratios, the structural voluminosity is written as: υσ = 
χvχaχσυϕ, where χσ=(1+N)3/(1+3N) is the flocculation factor. The coarse particles 
embedded in the mass of finer particles may also be included into the packing by the 
equation of mixed fractions: e=efC, or, in terms of the saturated water content, w = 
efC/G; where C is the clay fraction and G, the specific gravity of solids.  As the 
Atterberg limits are particular cases of the saturated water content, the plasticity index 
can be expressed as: Ip = AC, where A = (υL-υP)/G is the Skempton’s colloidal activity 
of clays. 

 

Figure 4. Rhombic packing: a) Idealized fabric of Yong and Sheeran [2], b) Idealized fabric of Collins and 
McGown [3], and c) Double layer, diameter of contact, and equivalent diameter.  

Due to the difficulty of defining the equivalent diameter, D, for fine soils, there is a 
deviation of the structural voluminosity from the real voluminosity: d = υσ - υ. So that, 
the void ratio, the saturated water content, and the plasticity index are written in terms 
of two parameters, χ1 and υφP, that stand for all the individual features: 
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5. Shear strength of clays at critical state 

In modern soil mechanics, it is clear that overconsolidated clays and dense sands are 
dilatant, and normally consolidated clays and loose sands are contractive [11]. This 
means that the consolidated drained angle of friction, ϕCD, of normally consolidated 
clays does not depend on the initial void ratio; except for the critical state, for which 
edilatant = econtractive. For the rhombohedron, Eq. (3) can be unfolded as follows: 
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In this equation, the water content, wcs, can be appropriately substituted by the 

liquid limit, wL, the plasticity index, IP, or the clay fraction, C. 

6. Shear strength of clay formations 

It is a known fact that points representing the same clay geological formation tend to 

group along a straight line in the Casagrande’s plasticity chart. This is mainly due to 

the fact that the clay fraction that composes the layer is the same; and, the constants χ1 

and χ2 become characteristics of such formation. But clay soils have the property to 

change structure according to the requirements of the environment. Due to an increase 

in the clay fraction, coarse particles forming a structural assembly with clay filler 

become embedded grains. The order of flocculation may increase to accommodate a 

larger amount of water in a cluster of fine particles. Flocculated structures of clay can 

change from flocculent to dispersed structures [11]. In these cases, constants χ1 and χ2 

change to a new value, so that the angle of critical friction associated to the change. 

 

  

   

Figure 5. The consolidated drained friction angle as a function of the liquid limit. 

C. Yanqui / Granular Mechanics of the Shear Strength of Normally Consolidated Clays514



The strength of clay geological formations has been better studied in artificial 

mixtures of coarse soil and clay. For example, the experiments of Stark and Eid [12], 

which relate the liquid limit to the friction angle of the critical state in soil mixtures, 

reveal that the change in structure is more evident as the clay fraction is increased. For 

mixtures with low clay content, the final friction angle depends on the coarse fraction 

and, therefore, is high and constant, on the order of 20° (Figure 5). These results also 

agree with the qualitative observations of Lambe and Whitman [13]. Mixtures with a 

higher clay content exhibit a second curved section, described by Eq. (4), but with a 

higher value of χ1. It is important to note that, for χ1 = ∞, Eq. (4) is transformed into the 

equation of a horizontal line, which represents a purely granular material or a clay in a 

totally dispersed state. In the Stark and Eid tests, the first angle of critical friction is 16°, 

and the second, 9.7°. In mixtures with a high clay content, the first section does not 

exist due to the definition of the liquid limit, and the second section starts with φµ1=17°, 

and ends with φµ2=7.0°. However, even this angle of friction varies until reaching the 

value φµ2=4.5°, corresponding to the total dispersed state.  

  

Figure 6. The consolidated drained friction angle as a function of the clay fraction. 

 

Figure 7. The consolidated drained friction angle as a function of the plasticity index. 

 

These results are corroborated by the tests reported by numerous authors. For 

instance, the tests carried out by Lupini et al. [14] show that the behavior of the mixture 

changes from a clay fraction of 46%, becoming constant the CD friction angle. This 

means that the coarse material ceases to have a structural participation in the mixture 

from C = 46%. On the other hand, it should be advertised that, actually, the friction 

angles correspond to a lightly overconsolidated clay, one for the peak condition and 

other for the critical state. In the Skempton tests [15], the change of the clay behavior 
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occurs when the clay fraction is 30%, but the friction angle in the second section varies 
according to Eq. (4), until reaching the residual value of 9.2° (Figure 6b). The tests on 
two marine clays, reported by Lambe and Whitman [13] (Figure 7a), show a behavior 
similar to those of Lupini et al. In this context, the data collected by Kenney [16] has a 
very high dispersion, as long as the fraction or the composition of the clays has not 
been considered. But it is illustrative to mention that, for this case, a good fit is 
obtained by making χ1=3.2 and χ2=0.84 (Figure7b). 

7. Conclusions 

All the characteristics of particulate materials may be studied in a simple and direct 
way using the packings of spheres. The mapping of the packing two-valued curve into 
the compression two-valued curve associates the dilatant packing to an 
overconsolidated clay, and the contractive packing to a normally consolidated clay. So 
that, there is a unique value for the consolidated-drained friction angle of normally 
consolidated clays. However, due to the duality of packings, a clay geological 
formation may be characterize by means of the law for overconsolidated clays just for 
the critical state. Indeed, the consolidated-drained friction angle for normally 
consolidated is related to the coefficient of lateral pressure at rest, the liquid limit, the 
plasticity index, and the clay fraction. All of these curves fit very well with the 
experimental data reported by several authors. 
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