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Abstract. Traditionally, querying knowledge graphs is free of charge. However,
ensuring data and service availability incurs costs to knowledge graphs providers.
The Delayed-Answer Auction (DAA) model has been proposed to fund the main-
tenance of knowledge graph endpoints by allowing customers to sponsor entities
in the Knowledge Graph so query results that include them are delivered in pri-
ority. However, implementing DAA with time-to-first results acceptable for data
consumers is challenging because it requires reordering results according to bid
values. In this paper, we present the AuctionKG approach to enable DAA with a
low impact on query execution performance. AuctionKG relies on (i) reindexing
sponsored entities by bid values to ensure they are processed first and (ii) Web pre-
emption to ensure delayed answering. Experimental results demonstrate that our
approach outperforms a baseline approach to enable DAA in terms of time for first
results.
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1. Introduction

Many public RDF knowledge graphs are published on the Web following the Linked Data
principles [1,2]. A subset of these knowledge graphs are interconnected, as numerous IRI
identifiers found in one graph also appear in multiple others [3]. These interconnected
knowledge graphs form the Linked Open Data Cloud, also known as the Web of Data
(WoD). The WoD can be seen as a big decentralized knowledge graph on the Web. As of
September 2023, the Linked Open Data Cloud contains 1314 RDF datasets and billions
of RDF triples 2.

Large public knowledge graphs provide a free query SPARQL interface (a ”SPARQL”
endpoint), e.g., Wikidata [4] and DBpedia [5]. Albeit free, access to these knowledge
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(a) A user wants to reserve a restaurant offering
traditional food with good rating

(b) A user gets a delayed answer based on bids of spon-
sors

(c) A user visiting link, the sponsor for that link pays the
auction which distributes money among providers

Figure 1. The Delayed Auction Model as described in [6]

graphs incurs costs for the service provider. As public knowledge graphs do not generate
revenue yet, the economic sustainability of such services is largely dependent on gov-
ernment funding. To scale the WoD vision, knowledge producers and curators must have
the economic incentives to undertake the task of publishing on the Web of Data.

One possible solution is to apply the techniques that finance the World Wide Web
(WWW) to the WoD. One of the biggest financial motors of the WWW is advertise-
ment [6]. Unfortunately, the WWW advertisement techniques cannot work on the WoD,
where software agents, rather than humans, query the machine-readable data and fur-
ther process it on behalf of one or more human users. This means data providers cannot
enforce how adverts are shown to humans, if at all.

In [6], the authors propose the Delayed-Answer Auction (DAA) model to answer
the question: How can the WoD be free and financially sustainable at the same time?.
Figure 1 illustrates the DAA model: data providers allow organizations to sponsor IRIs
of entities in their datasets. When a user asks a query to the federation of data providers
(Figure 1a) the auction mechanism guarantees that solutions featuring IRIs of entities
with higher bids are returned earlier than those with lower bids (Figure 1b). Query re-
sults are split into N batches delivered with delays t1...tN between them, auctioning the
placement of results in the first batch to the highest bidders. Like a user clicking on a
link on a Web Page, a user (or an agent acting on behalf of a user) can select an IRI from
a query response to explore. If a user or agent dereferences an IRI in the query results,
the sponsor of that entity pays the amount they bid, which is then distributed among data
providers who contributed to the query (Figure 1c).

The foundational paper on the DAA model concentrates on its economic aspects
and merely suggests a basic method to implement the DAA model: order solutions by
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the value of the bids on the entities they contain and then split in batches. This has the
fundamental shortcoming of requiring a ‘ORDER-BY bid value’ clause to calculate the
complete query answer before ordering results, leading to two practical consequences (i)
potentially slowing down query processing, affecting revenue (ii) As users are likely to
not consume all query results, a substantial amount of the computational work expended
in producing the complete query answer is wasted.

In this paper, we introduce a novel method, AuctionKG, to tackle these challenges.
AuctionKG leverages the concept of Web Preemption (a technique for suspending query
execution, cf. Section 3) to support delayed query answering and re-indexes sponsored
entities during bidding to ensure correct ordering when queries are executed. We claim
the following contributions:

1. An efficient strategy for query execution in the context of a DAA model.
2. An experimental study comparing the time for the first results of our new method

against the baseline approach suggested in [6] on a subset of the WatDiv query
benchmark [7]. Our experiments show that AuctionKG is four times faster than
the baseline.

3. We compare the performance difference of our method depending on the DAA
batch type: fixed size versus fixed waiting time.

The rest of the paper is organized as follows: Section 2 provides background and
motivation. Section 3 outlines our approach and highlights its benefits. Section 4 de-
tails our experimental study. Section 5 reviews related works. Finally, Section 6 presents
conclusions and discusses future work.

2. Background and Problem Statement

Following [6], we distinguish the following actors (cf Figure 1a):

Data providers host RDF knowledge graphs and allow exclusive access to the auction-
eer to manage bids.

Auctioneer hosts a SPARQL endpoint providing access to data from Data Providers and
implements an auction model, e.g., DAA.

Users submit SPARQL queries to the auctioneer’s endpoint.
Sponsors submit sponsorship bids to the auctioneer for entities hosted by data providers,

expecting that if the bid is high enough, a result containing a sponsored entity will
be delivered to users in the first batch of results.

The auctioneer acts as an intermediary between providers, users, and sponsors. It
handles bids from sponsors, processes SPARQL queries from users, and delivers answers
in batches according to the chosen auction model and current bids.

Definition 1 (Delayed Answer Auction) Let a pair (e,v) be a bid where e is an RDF
resource and v is a positive real number representing the bid’s value. Given a set of RDF
Datasets G, a number of batches N > 0, a set of bids S and a SPARQL query Q compute
the sequence of batches of the evaluation of Q on G, �Q�G:

[(B0,0),(B1,d1), ...,(BN ,dN)]
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s e l e c t ? r e s t o where {
? r e s t o : t ype : r e s t a u r a n t .
? r e s t o : C i t y ex : P a r i s .
? r e s t o : r a t i n g ”A”

}
(a) Q1: Query submitted by a user

s e l e c t c o a l e s c e (? id , ? r e s t o ) where {
? r e s t o : t ype : r e s t a u r a n t .
? r e s t o : C i t y ex : P a r i s .
? r e s t o : r a t i n g ”A” .
op t i o n a l {

? r e s t o au c t i o n : b i d ? b i d .
? r e s t o owl : sameAs ? i d

}
} orde r by ? b id

(b) Bid?resto(Q1)

Figure 2. (a) Example SPARQL query submitted by a user Q1 (b) Bid?resto(Q1): a rewriting of query Q1 to
ensure order by bid value on sponsored bindings of variable ?resto

where {B0,B1...,BN} is a partition of size N of �Q�G , and {d1, ...,dN}> 0 are times
measured from zero representing the delivery delay of each batch, i.e., B0 is delivered at
time 0, B1 at time d1 and so on.

2.1. Delayed Answer Auction with Query Rewriting

A straightforward yet naive approach to implementing a DAA is to rewrite users’ queries
to add an Order By clause to ensure that sponsored entities are prioritized over non-
sponsored ones, and they are delivered in bid value order.

To illustrate, consider a scenario where several data providers host and curate infor-
mation about restaurants in Paris, including type of cuisine and rating, in RDF. These
providers form a federation, exclusively accessed through an Auctioneer’s SPARQL end-
point. Consider the following RDF triples in the Auctioneer’s Knowledge Graph:

@p r e f i x example : <ht tp :// example . org/>
@p r e f i x a u c t i o n : <ht tp :// auc t i on−vocab . org/>
@p r e f i x a u c t i o n e e r : <ht tp :// au c t i o n e e r−domain . com/>

example : MyRestaurant au c t i o n : b i d 500 ;
a u c t i o n : sponso r example : sponso r1 ;
owl : sameAs a u c t i o n e e r : s p o n s o r e d r e s t o 1 .

Meaning that the entity example:MyRestaurant has a bid of 500 units placed by
sponsor example:sponsor1. The sameAs to the IRI auctioneer:sponsored_resto_1
ensures that when a user consumes a result, she is redirected to the auctioneer, which
proves to the corresponding Data Provider that data was accessed through it3.

Suppose the query Q1 of Figure 2a. Q1 retrieves Restaurants in Paris having an A
rating. To handle the DAA model, Q1 is rewritten as Bid?resto(Q1) where ?resto is the
bid variable as described in Figure 2b. Bid?resto(Q1) introduces 3 additional clauses:

OPTIONAL Retrieves the bid identifier and amount for each entity if existing.
COALESCE Ensure the return of the auctioneer corresponding to a sponsored entity

when it exists. If it doesn’t, the entity is not currently sponsored, and its original
IRI is returned.

3For simplicity, we store bid information in the same named graph as the base data. This has the security
issue of allowing users to query bid amounts in an attempt to game the auction. To avoid that, bid data could
be stored in a different named graph, or queries involving auction related predicates forbidden.
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Table 1. A sample RDF Dataset of restaurants, their locations, rankings, and reservation links

S P O

L’Ardoise City Paris

L’Ardoise Ranking A

L’Ardoise rdf:type Restaurant

Chez Louis City Paris

Chez Louis Ranking A

Chez Louis rdf:type Restaurant

Schweizer Schwein City Zurich

Schweizer Schwein Ranking B

Schweizer Schwein rdf:type Restaurant

Table 2. SPO, POS, and OSP indexes of RDF Dataset in Table 1
S P O

Chez Louis City Paris

Chez Louis Rating A

Chez Louis Type Restaurant

L’Ardoise City Paris

L’Ardoise Rating A

L’Ardoise Type Restaurant

Schweizer Schwein City Zurich

Schweizer Schwein Rating B

Schweizer Schwein Type Restaurant

P O S

City Paris Chez Louis

City Paris L’Ardoise

City Zurich Schweizer Schwein

Rating A Chez Louis

Rating A L’Ardoise

Rating B Schweizer Schwein

Type Restaurant Chez Louis

Type Restaurant L’Ardoise

Type Restaurant Schweizer Schwein

O S P

A L’Ardoise Ranking

A Chez Louis Ranking

B Schweizer Schwein Ranking

Paris Chez Louis City

Paris L’Ardoise City

Restaurant Chez Louis Type

Restaurant L’Ardoise Type

Restaurant Schweizer Schwein Type

Zurich Schweizer Schwein City

ORDER BY orders the results by bid values.

In many scenarios, it is expected that only a small amount of results will be con-
sumed. Suppose a user retrieves 20 results of query Q1 on a SPARQL endpoint. The exe-
cution time of finding 20 results of query Q1 is less or equal to the execution time of Q1.
If the user now retrieves 20 results of query Q1 on an auctioneer’s SPARQL endpoint,
Q1 is rewritten into Bid?resto(Q1), and the 20 results should be ordered by bid values.
In current SPARQL engines, the OrderBy clause requires computing the complete an-
swer before delivering the first 20 results, yielding an execution time to obtain the first
20 results of Q1 greater than the execution time of Q1. In our experimental study (sec-
tion 4), we found that on average, retrieving 20 results of Qi is at least 10 times faster
than retrieving 20 results of Bidv(Qi).

According to controlled experiments made in [8], if the time to display search re-
sults is increased by 500ms, the revenue is reduced by 20%, making the naive solution
unfeasible for commercial applications. In consequence, implementing the DAA model
on current SPARQL endpoints seriously degrades the performance of users’ queries.
Ideally, we want the DAA model to not degrade the query performance leading to the
following problem statement:

Problem 1 Given a query Q, the problem is to reduce the execution time to deliver k
results of Q with respect to the execution time to deliver k results of Bidv(Q).

3. AuctionKG Approach

We focus on SPARQL conjunctive queries where entities may be sponsored following a
DAA model. We suppose that at least one projected variable returns the URL of entities
that may be sponsored. We call this projected variable the bid variable.
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s e l e c t ? c i t y ? r e s t o where {
? r e s t o : t ype : r e s t a u r a n t . #tp1
? r e s t o : C i t y ? c i t y . # tp2
? r e s t o : r a t i n g ”A” . #tp3
? c i t y : coun t r y : France #tp4

}
(a) Q3: Query submitted by a user

s e l e c t ? c i t y ? r e s t o where {
? r e s t o : t ype : r e s t a u r a n t . #tp1
? r e s t o : C i t y ? c i t y . # tp2
? r e s t o : r a t i n g ”A” . #tp3
? c i t y : coun t r y : France #tp4
op t i o n a l {

? c i t y au c t i o n : b i d ? b i d .
? c i t y owl : sameAs ? i d }

} orde r by ? b id

(b) Bid?city(Q3)

Figure 3. Illustration of a query that requires forcing join order. If ?city is the bid variable, our approach
requires the t p4 to be the first pattern evaluated to preserve order.

Given a conjunctive query Q and a bid variable v, our baseline is a bid query noted
Bidv(Q), where Q is rewritten with an optional statement to retrieve biddings and an
order by statement to return results following the bid order as presented in Figure 2b.
The main issue with Bidv(Q), is that the time to deliver the first results of Bidv(Q) is the
same as the time to compute its complete answer.

To tackle this problem, we followed a simple key idea. Given a conjunctive query
Q and a bid variable v, we forced the join order of triple patterns of Q to start with a
triple pattern containing v. Next, we ensured that the bid variables to return mappings
following the bid order using a dedicated indexing scheme. Finally, to enable delays
between ordered results, we followed the Web Preemption principle[9] that allows to
suspend query execution after a quantum of time for resuming it later.

To illustrate, consider the query Bid?resto(Q1) of Figure 2b, ?resto is the bid vari-
able. As all triple patterns of Q1 contains the bid variable, and the join order of triple
patterns of Q1 is ensured to start with a triple pattern containing the bid variable. In this
case, if all mappings of ?resto respect the bid order then, query results follow naturally
the bid order.

To illustrate a more complex example, suppose the query Q3, on Figure 3b, that
asks for restaurants located in a French city. Suppose the bid variable is ?city, i.e., cities
are sponsored, and we want results to be ordered by the values of bids on cities. In this
case, our approach will force the join order of Q3 triple patterns to start with t p4, e.g
t p4 → t p2 → t p3 → t p1.

To make this key idea work, we need to answer two questions:

1. How to ensure that any triple pattern returns its mapping following the bid order?
We achieve that with a dedicated indexing scheme.

2. How to delay next results after delivering the k first (sponnsored) results? We
achieve delayed results by relying on the Web Preemption principle[10].

Note that forcing join ordering on the bid variable may lead to suboptimal query
execution plans, hence, we empirically measure this tradeoff in our experiments.

3.1. Re-indexing sponsored entities

Avoiding rewriting requires a SPARQL engine that ensures the bid-aware evaluation.
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Definition 2 (bid-aware Evaluation) Given a SPARQL query Q, a bid-aware query en-
gine generates sponsored entities in the results of Q first and in decreasing order of bid
values.

To ensure bid-aware evaluation, when processing a SPARQL query Q, a query en-
gine must begin by evaluating a triple pattern T P ∈ Q that contains a sponsored result,
prioritizing sponsored entities based on their bid values. It is generally challenging to
guarantee this property [11]; however, with known sponsored entities, as in AuctionKG,
it is feasible to initiate query execution with a triple pattern that includes a sponsored
entity by enforcing the join order following the method suggested in [12].

We propose re-indexing sponsored entities at the bidding time of the auction process
and forcing the join ordering to ensure bid-aware evaluation. Re-indexing ensures that
sponsored entities with the highest bids are scanned first, and the enforced join orders
ensure that the query engine starts the evaluation with a triple pattern encompassing
sponsored entities in its results.

For an RDF graph composed of a set of RDF triples of the form <S, P, O>, Auc-
tionKG requires four indexes SPO, POS, OSP, and PSO to ensure the property 2.

For simplicity, we present in Table 2 three indexes: SPO, POS, and OSP of the
sample dataset in Table 1 (we omit prefixes for simplicity). In simple words, the re-index
process renames entities in the index so they move to the top. It is composed of the
following steps:

1. Craft a hyperlink with the auctionIRI of the auction and the bid’s value. Recall
from Section 2.1 that auctioneers deliver hyperlinks that redirect to them to keep
track of result consumption. The bid’s value is included to ensure ordering. To
lexicographically order numerical bid values, a simple yet sufficient approach
is to prepend to the string representation of the numerical value an alphabetical
string encoding the number of digits of the bid (Z = 1 digit, Y = 2 digits, and
so on, the reverse order ensures that lexicographical order returns larger numer-
ical bids first)4. For instance, following from the example in Table 1, if a spon-
sor bids 40 units for entity L’Ardoise and another sponsor bids 100 units for
entity Chez Louis, example IRIs are http://auctioneer/aaa-Y-40-auction-entity1
and http://auctioneer/aaa-X-100-auction-entity2, respectively. The prefix aaa en-
sures sponsored identities are placed at the top of the index.

2. Replace the original entityIRI of the sponsored entity with the auctionIRI crafted
in the previous step.

3. Insert a triple entityIRI owl:sameAs auctionIRI to ensure the original entity IRI
can be returned upon dereference of auctionIRI by a user. Following our example,
we need to state that :aaa-Y-40-auction-entity1 is the same as :L’Ardoise.

We implemented the steps above as a single SPARQL Update query, for which an
instance for entity L’Ardoise is shown in Figure 4.

Tables 2 show the index state before renaming. Table 3 shows the index of Table 1
after indexation with the query on Figure 4. The entityIRI L’Ardoise has been replaced
with auctionIRI aaa-Y-40-auction-entity1. When receiving a query like the one in
Figure 2a, reindexing ensures the property 2.

4Other encodings are possible, for example number-based: 100 = 1 digit, 010 = 2 digits, 001 = 3 digits, etc.
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INSERT {
a u c t i o n e e r : aaa −Y−40− a u c t i o n − e n t i t y 1 ? p1 ? o1 ;

a u c t i o n : b i d 40 ;
a u c t i o n : s p o n s o r a u c t i o n e e r : sponso r ID ;
owl : sameAs example : L ’ A r d o i s e .

? s2 ? p2 a u c t i o n e e r : aaa −Y−40− a u c t i o n − e n t i t y 1 .
}

DELETE {
example : L ’ A r d o i s e ? p1 ? o1 .
? s2 ? p2 example : L ’ A r d o i s e .

}

WHERE {
example : L ’ A r d o i s e ? p1 ? o1 .
? s2 ? p2 example : L ’ A r d o i s e .

}

Figure 4. Example of Reindexing SPARQL Update query after a sponsorship bid. Prefixes omitted for brevity.

Table 3. Example of sponsored entities re-indexation following query in Figure 4, for index strategies SPO
(left), OSP (center) and POS (right). Prefixes omitted for brevity.

S P O

aaa-Y-40-auction-entity1 City Paris

aaa-Y-40-auction-entity1 Rating A

aaa-Y-40-auction-entity1 Type Restaurant

Chez Louis City Paris

Chez Louis Rating A

Chez Louis Type Restaurant

Schweizer Schwein City Zurich

Schweizer Schwein Rating B

Schweizer Schwein Type Restaurant

P O S

City Paris aaa-Y-40-auction-entity1

City Paris Chez Louis

City Zurich Schweizer Schwein

Rating A aaa-Y-40-auction-entity1

Rating A Chez Louis

Rating B Schweizer Schwein

Type Restaurant aaa-Y-40-auction-entity1

Type Restaurant Chez Louis

Type Restaurant Schweizer Schwein

O S P

A aaa-Y-40-auction-entity1 Rating

A Chez Louis Rating

B Schweizer Schwein Rating

Paris aaa-Y-40-auction-entity1 City

Paris Chez Louis City

Restaurant aaa-Y-40-auction-entity1 Type

Restaurant Chez Louis Type

Restaurant Schweizer Schwein Type

Zurich Schweizer Schwein City

3.2. Web Preemption

After ensuring bid-aware evaluation, the second step of AuctionKG is to deliver the
solutions in batches with those including entities with the highest bids delivered first, and
the rest after a pre-defined delay. The DAA model emphasizes the influence of the delay
between batches and the probability of a user clicking on a link on a result in the batch.
However, it does not specify whether a batch corresponds to a specific execution time or
to a fixed number of results within the batch. Fortunately, the Web Preemption principle
can handle both cases.
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Web Preemption [10] is defined as the capacity of a SPARQL web server to suspend
the execution of a running SPARQL query in order to resume it later. In the context of the
DAA model, the SPARQL preemptable server returns results to the user after computing
a fixed number of results or after a fixed amount of time. A preemptable server restarts
execution from where it has been suspended when receiving a request from the user to get
more results. Web preemption can be configured to deliver results either when reaching
a fixed number of results or a fixed amount of time.

4. Experimental Study

This experimental study aims to answer the following questions empirically:

1. How faster AuctionKG delivers query results compared to a baseline query
rewritten with an OrderBy clause?

2. What is the impact of forcing join ordering by bid variable on query execution
time?

3. What is the difference in performance between delivering a fixed batch size and
delivering all results collected up to a fixed waiting time?

All experimental material is available at https://github.com/GDD-Nantes/

sage-auction.

4.1. Experimental Setup

Dataset and Queries We use the WatDiv [7] SPARQL benchmark with 10M triples.
The WatDiv benchmark represents shops selling products. In the context of auctions,
bids are located on product entities. Among all products (of which there are 25000), 5%
are randomly sampled and assigned a random bid value between 1 and 100.

From the 12400 original diverse WatDiv queries, we removed duplicates and only
kept those returning sponsored entities, yielding a workload of 222 queries featuring be-
tween 3 and 13 joins. We chose as bid variable the product uri, similar to the ?resto
variable in query Bid?resto(Q1) of Figure 2b

Implementation For fair comparison, we used the Sage server 5 for executing our 222
queries with all approaches. Sage implements web preemption and can suspend queries
after delivering several results, or after a quantum of time. We used PostgreSQL as the
backend for Sage server with B+ trees and 4 indexes SPO, POS, OSP, and PSO. Concern-
ing join ordering, Sage uses a simple strategy that sorts triple patterns by estimated car-
dinalities. It also avoids cartesian products (if possible) when assembling triple patterns
following the sort order.

Approaches We compare the following approaches:

Basic query Rewriting (Bid): We rewrite each query in the workload following the pat-
tern shown in Figure 2b: OPTIONAL and COALESCE clauses to retrieve bids for
the bid variable and an Order By clause. The Order By is executed following
the traditional materialize-and-sort approach. For this approach, we execute the
queries until getting the complete answer, then sort and return the first 20.

5http:sage.univ-nantes.fr
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Table 4. Number of results per approach

approach min max mean

bid 2 809828 42494.527027

rename 2 809828 42494.527027

rename-force 2 809828 42494.527027

rename-force-500ms 0 20 18.150150

rename-force-top20 2 20 18.770270

Renaming (Rename) All sponsored entities are renamed as described in section 3.1. The
join order is not forced to start with the bid variable, so results may be incorrect.
This approach serves to measure the cost of forcing the join order. We execute
queries until getting the complete answer.

Renaming (Rename-force) All sponsored entities are renamed as described in section
3.1. The join order is forced to start with the bid variable. For the rename ap-
proach, we execute the queries until getting the complete answer.

Renaming (top20) same as the Rename-force approach but retrieves only the top 20 re-
sults. This approach simulates a user consuming only the first 20 results. Unlike
the Bid approach, returning the top 20 does not require materializing all possible
results.

Renaming (500ms) same as the Rename-force approach, but delivers the top 20 results
or whatever number of results produced after 500ms of execution, which may
be less than 20 results. This simulates a user willing to wait at most 500ms to
get at most 20 results.

We run each query in every approach 3 times and report the average total execu-
tion time in milliseconds. We also report the number of results each approach needs to
produce to deliver the corresponding batches.

4.2. Experimental Results

Table 4 shows the minimal, maximal, and average number of results per approach. As
expected, the maximum number of results and the average are the same for Bid, Rename
and Rename-force. Comparing the average number of results between Rename-force-
500ms and Rename-force-top20 shows that Rename-force-500ms returns fewer results
but guarantees a fixed execution time of a batch, while Rename-force-top-20 returns
always the 20 first results but in a variable time. There are 2 queries (q102 and q92)
without results for the Rename-500 approach, i.e., no results were found within 500ms.

Figure 5 presents the execution times per query for each approach (encoded in
color). The X-axis shows queries ordered by the execution time of the Bid approach.
Each measure is a point, but we use a line-point chart to facilitate the comparison of the
trends of each approach. The Y-axis features the execution time in milliseconds on a log-
arithmic scale. Note the diversity of complexity in our workload, with query execution
times ranging between 100ms and 300s.

We observe a significant gap between Bid and Rename-force lines, evidencing
the high overhead introduced by the optional and order by clauses when rewriting
queries. Rename-force is slower than the bid approach in 15 queries (7% of the work-
load), these are the instances where forcing the join order to start with the bid variable
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Figure 5. Execution times of all queries following the different approaches

produced suboptimal plans that were significantly worse than those produced by the Bid
approach.

Comparing Rename and Rename-force allows us to evaluate the effect of forcing the
join order of query execution. No approach dominates the other. We observe that most of
the execution times are close, but for queries where there is a noticeable difference, it is
quite significant.

Comparing Bid and rename-top20 allows us to assess the cost of the materialize-
and-sort approach. Even for computing the top-20 results, the bid approach needs to pro-
duce all results, whilst Rename-top20 only computes the top20. As we can see, the per-
formance gap can reach several orders of magnitude highlighting the intractability of the
Bid approach in practice. We also observe high variations in the execution of rename-
top20. Depending on the query and the join order, reaching the 20 first results depends
on the selectivity of query triple patterns, i.e., many intermediate results may be rejected
before finding the correct ones. Compared to Rename-top20, Rename-500ms executes
the query on the server for at most 500ms and at most 20 results. Consequently, Rename-
500ms terminates at 500ms possibly returning less than 20 results. Overall, Rename-
500ms and Rename-top20 have quite similar performances. Rename-500ms only im-
proves query execution when Rename-top20 requires more than 500ms to compute the
top20 results.

Figure 6 shows the average execution time of all approaches. This visualization fur-
ther confirms our previous analysis. As Rename-top20 and Rename-500 can stop execu-
tion after a fixed amount of time or results, they dominate the Bid approach. This figure
also reveals that Rename-500ms has a slightly faster execution time than Rename-top20,
at the expense of completeness.

H. Skaf-Molli et al. / Enabling Delayed-Answer Auctions for RDF Knowledge Graphs Monetisation 289



Figure 6. Average Execution times of queries per approach

5. Related Work

Data Marketplaces, also known as Data Market Platforms, are systems that mediate be-
tween data sellers and buyers and help them with their sharing, discovery, integration,
and valuation problems. Data marketplaces problems can be classified as (i) Design, or
how to design rules that lead to desired outcomes, for instance, auction mechanisms with
certain guarantees, such as DAA and (ii) Deployment, or how to implement the mar-
ket and enforce the designed rules, for instance, the efficient implementation of auction
mechanisms [13,14].

The Semantic Web community has produced marketplaces that are either built upon
Semantic technologies or intend to support the sale of Linked Data [15,16,17,18]. How-
ever, efforts are mostly focused on the transformation, integration, and description of data
using semantic technologies to enable discovery and matchmaking between sellers and
buyers through SPARQL queries. [16] supports the assignment of pre-defined pricing
schemes to complete datasets, but not for fine-grained mechanisms such as DAA.

For query-answering on the Web of Data, there are no slots to auction, and agents
can reorder received results at will. DAA overcomes this issue by replacing slots with
time-to-deliver results, including sponsored entities as the scarce resource up for grabs.
Several other auction models have been developed for selling data, but most of them with
different pricing schemes that are not time-sensitive. [19] constructs a Data Marketplace
for selling data to improve the accuracy of prediction tasks. Instead of receiving a query
as input, the auctioneer receives from buyers a Machine Learning Model and a bid stating
how much they are willing to pay for data that increases the accuracy of the model.
[20] considers a general scenario where buyers submit bids to get some data in order
to maximize a utility function. In this context, they use delays to protect auctioneers
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from strategic behavior such as the submission of artificially low bids in an attempt to
influence future prices downward. To counter this, auction winners are computed on an
epoch instead of individually (called an Epoch-Shield), and introducing a time delay to
avoid strategic buyers fine-tuning their strategies by submitting multiple bids, without
hurting truthful buyers (called a Time-shield). This approach acts upon users’ bidding
for query results and complements DAA, which acts upon users’ bidding for entities to
appear on query answers.

Our approach is related to the problem of efficient execution of general SPARQL
top-k queries as defined in [11,21,9]. Top-k queries return the top-k results ordered by a
user-defined scoring function. In the context of DAA, the scoring function is not defined
by the users, but by the auctioneer. This allows the auctioneer to build the required dedi-
cated index for ensuring bid ordering independently of SPARQL operators implemented
in the engine, as long as they respect index order.

[21] proposes an approach to approximate SPARQL top-k join processing tailored to
the case where the ranking function can only be computed at runtime and where frequent
data updates make the computation of statistics on the ranking function infeasible. They
propose to learn score distributions in a pay-as-you-go manner at runtime, having score
statistics with constant space complexity and a computation complexity bounded by the
result size. They achieve time savings of up to 65%, at the expense of 10-15% recall loss.
An approximated model is not suitable for a DAA, as not delivering results in the right
order would mean the Auctioneer violates the contract with the Sponsor. Fortunately, bid
value is a ranking function that is available offline, making our approach feasible.

SPARQL-RANK [11] introduces the idea of having dedicated physical operators
such as RankJoin to provide early termination of queries supported by sorted access by
ranking function. Sorted access enables the early termination of top-k queries because,
after a certain point, remaining mappings are guaranteed to not be part of the top-k re-
sults. This approach tackles the general case when the ordering expression may be com-
plex and not known in advance. In the DAA context, the ordering of entities is simple
and known in advance. This allows to build sorted access to sponsored entities.

The approach outlined in [9] combines Web Preemption with top-k query process-
ing. It proposes a preemptable top-k operator whose overhead does not depend on k. It
demonstrates a reduction in query execution time by up to 60% and a decrease in the
amount of data transferred by a factor of 100. However, this technique only ensures early
pruning rather than early termination as SPARQL-RANK. In our context, a preemptable
top-k operator requires scanning all the values of a bid variable before delivering ordered
results. Thanks to its sorted access to sponsored entities, AuctionKG scans only required
values to deliver the answer.

6. Conclusion

In this paper, we presented AuctionKG, an approach combining reindexing and Web Pre-
emption to implement the delayed auction model efficiently. Experiments demonstrate
that the simple rewriting approach seriously degrades performance making the DAA
model intractable in practice. Thanks to AuctionKG, we can deliver the first results in
less than 1 second making the DAA approach usable in practice and contributing to the
foundations of a sustainable economic model for the Web of Data.
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In future work, other techniques are needed to ensure sorted access by bid order of
triple patterns, as renaming does not work with a dictionary-like index. A further chal-
lenging problem is to consider more than one bid variable, i.e., on query Q3 of Figure 3b,
not only considering ?city but also ?resto. How to return first the city with the highest
sponsorship bid together with the restaurant with the highest sponsorship bid?
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Path Queries. In: Extended Semantic Web Conference. Hersonissos, Greece: LNCS; 2023. Available
from: https://hal.science/hal-04151371.

[13] Fernandez RC, Subramaniam P, Franklin MJ. Data market platforms: trading data assets to solve data
problems. Proc VLDB Endow. 2020 jul;13(12):1933–1947. Available from: https://doi.org/10.
14778/3407790.3407800.

H. Skaf-Molli et al. / Enabling Delayed-Answer Auctions for RDF Knowledge Graphs Monetisation292

https://hal.science/hal-02076911
https://doi.org/10.1145/3178876.3186002
https://doi.org/10.1145/3208352.3208355
https://doi.org/10.1145/3208352.3208355
https://doi.org/10.1145/3308558.3313652
https://hal.science/hal-04151371
https://doi.org/10.14778/3407790.3407800
https://doi.org/10.14778/3407790.3407800


[14] Azcoitia SA, Laoutaris N. A Survey of Data Marketplaces and Their Business Models. SIGMOD Rec.
2022 nov;51(3):18–29. Available from: https://doi.org/10.1145/3572751.3572755.

[15] Jacob B, Ortiz J. data.world: A Platform for Global-Scale Semantic Publishing. In: The Semantic Web
– ISWC 2017 – Posters and Demo Track; 2017. .

[16] Roman D, Paniagua J, Tarasova T, Georgiev G, Sukhobok D, Nikolov N, et al. proDataMarket: A Data
Marketplace for Monetizing Linked Data. In: The Semantic Web – ISWC 2017 – Posters and Demo
Track; 2017. .

[17] Pomp A, Paulus A, Burgdorf A, Meisen T. A Semantic Data Marketplace for Easy Data Sharing within
a Smart City. In: Proceedings of the 30th ACM International Conference on Information & Knowl-
edge Management. CIKM ’21. New York, NY, USA: Association for Computing Machinery; 2021. p.
4774–4778. Available from: https://doi.org/10.1145/3459637.3481995.

[18] Hamed N, Gaglione A, Gluhak A, Rana O, Perera C. Query Interface for Smart City Internet of Things
Data Marketplaces: A Case Study. ACM Trans Internet Things. 2023 sep;4(3). Available from: https:
//doi.org/10.1145/3609336.

[19] Agarwal A, Dahleh M, Sarkar T. A Marketplace for Data: An Algorithmic Solution. In: Proceedings
of the 2019 ACM Conference on Economics and Computation. EC ’19. New York, NY, USA: Asso-
ciation for Computing Machinery; 2019. p. 701–726. Available from: https://doi.org/10.1145/
3328526.3329589.

[20] Castro Fernandez R. Protecting Data Markets from Strategic Buyers. In: Proceedings of the 2022
International Conference on Management of Data. SIGMOD ’22. New York, NY, USA: Association for
Computing Machinery; 2022. p. 1755–1769. Available from: https://doi.org/10.1145/3514221.
3517855.

[21] Wagner A, Bicer V, Tran T. Pay-as-you-go Approximate Join Top-k Processing for the Web of Data. In:
Presutti V, d’Amato C, Gandon F, d’Aquin M, Staab S, Tordai A, editors. The Semantic Web: Trends
and Challenges. Cham: Springer International Publishing; 2014. p. 130-45.

H. Skaf-Molli et al. / Enabling Delayed-Answer Auctions for RDF Knowledge Graphs Monetisation 293

https://doi.org/10.1145/3572751.3572755
https://doi.org/10.1145/3459637.3481995
https://doi.org/10.1145/3609336
https://doi.org/10.1145/3609336
https://doi.org/10.1145/3328526.3329589
https://doi.org/10.1145/3328526.3329589
https://doi.org/10.1145/3514221.3517855
https://doi.org/10.1145/3514221.3517855

