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Abstract. Machine learning (ML) is becoming increasingly important in health-
care decision-making, requiring highly interpretable insights from predictive mod-
els. Although integrating ML models with knowledge graphs (KGs) holds promise,
conveying model outcomes to domain experts remains challenging, hindering us-
ability despite accuracy. We propose semantically describing predictive model in-
sights to overcome communication barriers. Our pipeline predicts lung cancer re-
lapse likelihood, providing oncologists with patient-centric explanations based on
input characteristics. Consequently, domain experts gain insights into both the char-
acteristics of classified lung cancer patients and their relevant population. These
insights, along with model decisions, are semantically described in natural lan-
guage to enhance understanding, particularly for interpretable models like LIME
and SHAP. Our approach, SemDesLC, documents ML model pipelines into KGs,
and fulfills the needs of three types of users: KG builders, analysts, and consumers.
Experts’ opinions indicate that semantic descriptions are effective for elucidating
relapse determinants. SemDesLC is openly accessible on GitHub, promoting trans-
parency and collaboration in leveraging ML for healthcare decision support.
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1. Introduction

Lung cancer (LC) is Europe’s leading cause of cancer death. LC is the most expensive
disease in Europe, costing nearly 3 billion euros annually to care for patients [1]. Al-
though expensive, lung cancer treatments can be more effective, and the chances of re-
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Figure 1. Motivating Example. An illustration of how the characteristics of lung cancer patients or sub-popu-
lations determine the state of Relapse. It also demonstrates the different questions that healthcare professionals
take into account when deciding on therapy or medication for lung cancer patients.

sponding are better if discovered at an early stage. Biomedical data have grown exponen-
tially in the previous decade. They include significant information that can be used for
accurate illness diagnosis and personalized medical care, demonstrated in [2]. Central to
this paradigm shift is the understanding that tailoring treatments for LC necessitates a
thorough examination of patient characteristics. One critical aspect that demands atten-
tion is the forecast of relapse, where the resurgence of previously treated cancer poses a
challenge, mainly when asymptomatic for long periods. However, within this complex-
ity lies an opportunity: timely prediction of relapse holds the key to enhancing survival
rates. Early detection and intervention may provide more treatment options and better
outcomes for patients. Managing cancer relapse in lung cancer patients is crucial for ex-
tending life expectancy and enhancing life quality.
Implementing predictive models based on machine learning algorithms can greatly ben-
efit healthcare professionals like doctors, researchers, and oncologists. These models of-
fer promising opportunities to enhance the ability to predict the likelihood of cancer re-
lapse in lung cancer patients [3]. By integrating diverse healthcare data, including pa-
tient demographics, medical history, and genetic markers, these models have the poten-
tial to provide actionable insights for timely interventions and personalized care plans.
This convergence of technology and medical research promises to transform preventative
healthcare, leading to proactive knowledge management and better outcomes for patients
facing lung cancer relapse. Figure 1 highlights an example of integrating the relapse pre-
diction problem with ML models for a patient and sub-populations.
Motivation. The motivation for our work arises from the fact that there is a noticeable
gap that hinders oncologists from requiring automated support and interpretability of
predictive model decisions. Figure 1 shows the lung cancer use case presented in the
current study. While not all patients will experience relapse, effective treatments are crit-
ical for those who do. Domain experts often deal with questions like How can patient
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characteristics influence the probability of relapse? or How can similar characteristics
of the population of patients affect the likelihood of relapse? to determine the treatments
suitable for the patients. In our lung cancer use case, patients are described by medical
characteristics such as patient identifier, smoking habits, cancer stages, and treatments,
along with additional features like family history, surgery, mutation, relapse, and per-
formance status. Figure 1 illustrates the need for automated help and interpretability of
prediction model decisions to bridge the communication gap with various KG users. The
main objective of SemDesLC is to provide a pipeline that documents ML model pipelines
into KGs. This enables domain experts to analyze treatment impacts, check if the patient
satisfies medical protocols, and assess the likelihood of relapse.
State-of-the-art data-driven interpretable frameworks such as decision trees, SHAP [4],
and LIME [5] generate a visualization, highlighting the important relevant features, and
prediction probabilities. However, decision trees are prone to existing bias in the data,
especially when the target class is imbalanced, resulting in decision trees with complex
relationships less reliable in predicting the target class.
The domain experts indicated that the visualizations produced by existing interpretable
frameworks (i.e., LIME and SHAP) were perceived as confusing, especially when there
was a lack of explanation for the information presented in the plot. Consequently, the
goal of this work is to implement a KG-based framework understandable by their users to
maximize usability. Our aim is to achieve the following research objectives: RO1) Define
a KG framework capable of efficiently improving the performance of predictive models.
RO2) Utilize ML models to predict lung cancer relapse. RO3) Enhance understanding
of ML models and the traceability of their decisions. Further, to meet our research ob-
jectives we aim to answer the following research questions: RQ1) Are techniques of-
fered for KG creation efficient compared to the state-of-the-art methods? RQ2) How ef-
ficient are data quality assessments? RQ3) How efficient is federated query processing?
RQ4) How do predictive models perform in terms of precision, recall, and F1-score?
RQ5) How significant are the results of interpretability of SemDesLC?
Challenges. Various approaches have explored the challenges KG users face and their
implications for usability. For example, Li et al. [6] report the results of a survey, which
enabled the identification of three types of KG users and the main problems they faced
when working with KGs: a) Data Quality: Users frequently identify data quality issues
such as inadequate or missing data, incorrect data, or data redundancy. Furthermore, par-
tial or erroneous data in the healthcare domain are frequently ambiguous and can lead to
incorrect conclusions, which must be avoided. b) Querying KGs: Non-technical users
have difficulty writing SPARQL queries on KGs to gain insights into predictive mod-
els, reducing their usability. c) Lack of understanding of end user’s needs: Presenting
predictive model conclusions without understanding the needs of domain experts yields
results that are insignificant to domain experts. d) Non-standarized nomenclature: An-
other commonly faced challenge is the absence of defined terminology. Different groups
may use the same word to represent multiple concepts or use different terms to describe
the same concept. e) Current KG Visualization Designs: KGs visualization designs
also fall short of domain specialists’ expectations. As a result, many end users either
do not understand the results or find it difficult to examine the insights provided. Our

Approach. SemDesLC, is a computational framework that relies on KG technologies to
trace and explain predictive models. SemDesLC creates an LC KG that integrates data
collected from medical data sources and another KG that represents traces describing
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the decisions made by the predictive models integrated in SemDesLC. The KG creation
process is declaratively defined as a data integration system [7] using mapping assertions
expressed in RML [8]. In addition, a federated query engine allows queries to be exe-
cuted across the LC and SemDesLC KGs. Finally, SHACL provides the basis for vali-
dating integrity constraints expressed as SHACL shapes. SemDesLC is demonstrated in
the lung cancer use case and evaluated in terms of the efficiency and effectiveness of the
techniques integrated into SemDesLC. Following the categorization of users identified
by Li et al. [6], the SemDesLC evaluation focuses on analyzing how well the needs of
the SemDesLC users are met. Thus, we empirically evaluate the efficiency of SemDesLC
to meet the needs of KG builders and analyze the accuracy of the predictive models to
meet the needs of KG analysts. Finally, to improve communication with KG consumers,
SemDesLC provides understandable visualizations and natural language (NL) explana-
tions of predictive model predictions; the interpretability of these NL descriptions has
been evaluated with the KG consumers of our LC use case.
Our contributions. 1) Analysis of the lung cancer use case to characterize the needs,
tasks, and requirements of its users, as well as integrity constraints. 2) SemDesLC, a
KG-based framework that integrates state-of-the-art KG technologies to meet the needs
of three types of users, i.e., KG builders, analysts, and consumers. 3) Performance eval-
uation of tools used for KG creation, SHACL validation, and federated query process-
ing. 4) Predictive model performance analysis, including accuracy, precision, and recall.
5) Interpretable descriptions of the predictive model results, enhanced and validated with
feedback from experts in the lung cancer field. The remainder of the paper is as follows:
Section 2 presents the LC use case, including requirements, roles, and tasks for KG ac-
tors. Section 3 introduces the terminologies and the proposed computational framework.
The experimental evaluation of SemDesLC approach is reported in Section 4. Section 5
summarizes the state-of-the-art approaches. Section 6 reports the observed outcomes of
SemDesLC and lastly in Section 7 outlined our conclusions and future works.

2. Use Case: Lung Cancer

In the LC use case, we deal with the classification challenge of categorizing patients as
having the condition Relapse or No Relapse, depending on patients’ or subpopulation
characteristics. The early detection of relapse may permit the implementation of more
effective treatment options, thereby improving the clinical results for patients. This can
be achieved through the use of automated tools like SemDesLC. Figure 2 depicts the
roles, needs, and tasks of the KG users in the LC use case described in this study.

2.1. Main Actors in the LC Use Case

The following section describes in detail the different KG users in the LC use case, with
an emphasis on the importance of each user in the process of the proposed framework.
KG Builders as shown in Figure 2a encompasses users responsible for managing the
data received, selecting the most appropriate database or representation mechanism to
store it. Furthermore, the requirements of this user type include tools for generating KGs
and performing data quality checks. The creation of KGs corresponds to the execution
of the RML mapping assertions over the instances of the data sources. Additionally, KG
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(a) KG Builders are typically experts in database systems, data management, or data modeling.

(b) KG Analysts are often experts in data science. (c) KG Consumer are end users or domain experts.

Figure 2. Knowledge Graph Actors. The figure depicts three distinct KG actors: KG Builder (Figure 2a),
KG Analyst (Figure 2b), and KG Consumer (Figure 2c) with varied skill levels in utilizing KGs. Each KG
actor plays a vital role and has specific needs to accomplish the tasks required for that role.

validation is used to assess data quality using SHACL constraints. The constraints indi-
cate whether an entity validates or invalidates the SHACL constraints, i.e., the medical
protocols defined by the domain experts in the LC use case. The evaluation of constraints
determines whether a specific entity violates the integrity constraints. The result is either
true, indicating that the entity is valid, or false, indicating that the entity is invalid.
As illustrated in Figure 2b the role of KG Analysts is to utilize ML expertise and data
science skills to generate insights. This is achieved through the use of interpretable tools
that provide both local and global explanations. Predictive models are employed to gen-
erate classification reports and decision trees, which are used to draw conclusions based
on the classification task. Furthermore, KG Analysts can evaluate data quality by review-
ing generated decision trees with SHACL restrictions, allowing analysts to gain insights
into data quality based on visualizations and the constraint validation report.
KG Consumers are domain experts, i.e., oncologists, medical doctors, or medical re-
searchers as shown in Figure 2c. KG Consumers require insights that can be easily un-
derstood, as this assists them in interpreting the outcomes of predictive models. Users
are more likely to interact with the data and accept the results when the data is presented
in a way that hides the underlying graph structure. Furthermore, supplementary com-
prehensible insights would enhance their understanding, thereby increasing trust and us-
ability of the outcomes generated by ML models for decision-making processes through
knowledge-driven frameworks like SemDesLC. Subsection 2.2 describes how KG Con-
sumers’ requirements are collected to deliver insights that meet their demands.

2.2. Requirement Analysis

Requirement analysis is the process of identifying, documenting, and comprehending
the needs and expectations of domain experts, in this case, medical doctors and re-
searchers. This understanding is essential for the design, implementation, and manage-
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ment of healthcare systems, applications, or services that align with the specific needs of
the healthcare domain. By conducting a comprehensive analysis of the requirements in
the healthcare domain, organizations can develop solutions that effectively address the
needs of healthcare providers. The KG consumers have highlighted as relevant two types
of analyses: Patient-centric Analysis refers to identifying characteristics of individual
patients resulting in the condition of Relapse. As shown in Figure 1, KG Consumers are
interested in identifying "How can patient characteristics influence the probability of re-
lapse?". The outcomes generated by predictive models often lack self-explanation. For
example, when a predictive model indicates a young female patient is experiencing a re-
lapse, it typically does not provide insight into the specific characteristics contributing to
the occurrence of the relapse. Consequently, domain experts must investigate further into
the patient’s medical history before making a decision. This ultimately leads to a reduc-
tion in the use of predictive model outcomes. Therefore, patient-centric analysis requires
the interpretation of a model’s predicted outcome for an individual patient. It is important
to present the reasons behind a particular patient being diagnosed with a Relapse; local
interpretable tools like LIME [5], can be employed to generate local explanations.
Population-centric Analysis is a method of evaluating predictive model outcomes based
on the sub-population of patients in the KG. As seen in Figure 1, KG Consumers are
interested in determining "How can similar characteristics of the population of patients
affect the likelihood of relapse?". The predictive models may effectively analyze a range
of patient characteristics, and suffer in explaining the reasoning behind their conclusions.
This can pose challenges for domain experts who rely on a clear understanding of why
certain predictions are made to make informed decisions. Thus, population-centric anal-
ysis allows us to identify patients with comparable features who fall into the same cat-
egory, as well as evaluate predictive model decisions based on existing characteristics.
For instance, a subpopulation of young female patients diagnosed with cancer at stage
IV and exhibiting biomarker ALK are typically classified as belonging to the Relapse
class. SHAP [4] generates global explanations, including feature importance, but fails to
provide an overview of the model’s behavior over the subpopulation.

3. SemDesLC

SemDesLC addresses the research objectives and challenges outlined in section 1 by aid-
ing diverse KG users. This section presents the framework of SemDesLC, demonstrating
the importance of semantically describing predictive models for interpretable insights.

3.1. Preliminaries

Data Integration System (DIS). The creation of a G is defined in terms of a data inte-
gration system DISG = 〈O,S,M〉 where O is a set of classes and properties of a unified
ontology, S is a set of data sources, and M corresponds to mapping rules or assertions
defining concepts in O as conjunctive queries over sources in S. The execution of the M
rules over data from sources in S generates the instances of G.
Knowledge Graph (KG). Given a set Con of countable infinite constants. A knowledge
graph (KG) is a directed edge-labeled graph KG = (V,E,L), where V ⊆ Con is a set of
nodes, L ⊆ Con is a set of edge labels, and E ⊆ V ×L×V is a set of edges.
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Figure 3. SemDesLC framework in a healthcare decision-support system, starting with creating KGs from
several data sources about lung cancer patients, followed by ensuring data quality. Secondly, KG analysts
obtain predictive models to classify target classes with probabilities. Lastly, our pipeline offers local and global
explanations to determine the likelihood of relapse with visualizations and their natural language explanation.

Shapes Constraint Language (SHACL). The Shapes Constraint Language (SHACL) [9]
is a language to define constraints over KGs. Constraints that are imposed over the same
set of entities in the KG are comprised in a shape. A collection of different shapes that
are validated over the same KG is called SHACL shape schema. The shapes in a SHACL
shape schema can be connected. A constraint linking two shapes is referred to as inter-
shape constraint. Hence, the remaining constraints are named intra-shape constraints.
Horn Rule. A Horn rule is defined as follows: Body ⇒ Head. The body of the rule is
comprised of predicate facts. The head is a predicate fact of a single atom. All the vari-
ables in the Head are terms of at least one predicate fact in the Body. Every two predicate
facts in Body share at least one variable. We say a rule R : B1 ∧B2 ∧B3 ∧ ......∧Bn =⇒
r(x,y) where head r(x,y) and body B1 ∧B2 ∧B3 ∧ ...∧Bn.

3.2. The SemDesLC Framework

SemDesLC framework comprises a series of interconnected components designed to fa-
cilitate efficient KG creation and performing predictive analysis. SemDesLC receives as
input heterogeneous data sources and offers an interpretable insight into predictive model
decisions with natural language explanations. The interconnected SemDesLC framework
components are as follows: KG Creation component receives a data integration system
DISG as input, and generates KG. The creation of KG in biomedicine necessitates the
integration of diverse data types, including drugs, genes, and clinical records, among
others. Furthermore, the intricate process of generating KGs from heterogeneous data
sources is addressed in the SemDesLC pipeline, which serves to facilitate users with
varying interests. The component uses RML mapping engines [10,11,12] for the creation
of LC KG that corresponds to the execution of the RML mapping assertions M over the
instances of the data sources S. The generated LC KG is then delivered as input to the
SHACL Validation component, which examines the quality of the data. The SHACL
shapes represent constraints for validating the KG and for uncovering the impact of val-
idation on models’ decisions. The validation engines [13,14,15] are employed to test
data quality utilizing SHACL constraints over the LC KG nodes. A validation report is
generated for each constraint. The result of the validation report states true, indicating
that the entity is valid, or false, indicating that the entity is not valid. The validation
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component includes 15 constraints, with 10 inter-shape constraints and 5 intra-shape
constraints. For instance, "inter-shape constraint" like "A lung cancer patient receiving
at least one treatment" and "intra-shape constraint like "A lung cancer patient should
have exactly one gender". These constraints may be employed as medical protocols, in-
dicating whether the patient validates or invalidates the protocols. This information may
prove useful to both KG Analysts and KG Consumers.
Predictive Analysis over KGs: The generated LC KG is provided as input to the pre-
dictive model component where KG Analysts play a role in training predictive models
over KGs. KG analysts examine the classification report produced by predictive mod-
els about its accuracy, precision, and recall. Predictive models with low precision or re-
call are more likely to produce inaccurate results. Consequently, analyzing the accuracy
of predictive models is crucial before examining their outcomes. Moreover, KG Ana-
lysts can assess the quality of the data, as the approach generates decision trees with
SHACL constraints, thereby enabling analysts to derive insights based on visualizations.
The utilization of post-hoc interpretable tools, such as SHAP [4] and LIME [5], enables
the comprehension of the rationale behind prediction model outcomes. Nonetheless, the
component generates the SemDesLC KG which reflects the traced contextual knowledge
about model traits and rationales, emphasizing the significance of interpretable insights.
Local and Global Explanations: Interpretable tools use prediction model outcomes
to provide explanations that can be classified as local and global. As described in sub-
section 2.2, the requirements of the KG Consumers are collected to satisfy their needs.
However, state-of-the-art interpretable tools are not sufficient, as they frequently produce
visualizations that are difficult to comprehend by KG Consumers. The presentation of
data in a manner that shields users from the underlying graph structure increases their
willingness to interact with the data and accept predictive model outcomes.
Considering patient-centric analysis, SemDesLC generated a detailed representation of
the outcome of LIME, incorporating information deemed essential by domain experts
for evaluating a patient’s characteristics or understanding why a specific patient was
classified as having relapsed. SemDesLC provides the input characteristics of a relapsed
patient by tracing into the input KG, which improves interpretability. Furthermore, do-
main experts receive a natural language explanation of the features that contributed to a
patient’s classification as Relapse. To illustrate, the predictive model identifies a patient
as a relapse, as shown in Figure 1, SemDesLC provides additional characteristics that
the patient is old and in stage IV, assisting oncologists to improve their decision-making
processes by understanding the classification results based on the input characteristics.
In population-centric analysis SemDesLC outputs the features that contributed to the pre-
diction of the model’s outcome for the sub-population, in conjunction with the associ-
ated weights, to highlight the importance of the features’ contributions to the model’s
outcome. Furthermore, the number of patients in the subpopulation that exhibit each of
these features is shown. This analysis also allows domain experts to identify patients
with comparable features who fall into the same category, as well as evaluate predic-
tive model decisions based on existing characteristics. For instance, a subpopulation of
young female patients diagnosed with cancer at stage IV and exhibiting biomarker ALK
are typically classified as belonging to the Relapse class.
SemDesLC offers Symbolic Learning, which enables the capture of explicit patterns from
the KGs and the generation of Horn Rules to derive insights from the KGs. For instance,
a Horn Rule: lc:stage(IIIC, X) ⇒ lc:hasBio(PDL1, X) states that if a patient
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Table 1. Benchmark Statistics. #triples – Number of RDF triples in the KG, #entities – Number of distinct
entities in the KG, #predicates – Number of distinct predicates in the KG. On the right, the Table shows lung
cancer patient counts based on age, relapse, smoking habit, and gender.

Lung Cancer KG Counts

#entities 15785
#predicates 27

#triples 71903

SemDesLC KG Counts

#entities 39200
#predicates 158

#triples 228155

Features Values Patients Count

Young 897
Age Category

Old 344

Relapse 754
Relapse

No Relapse 526

Current Smoker 612
Former Smoker 132Smoking Habit

Non Smoker 491

Female 870
Gender

Male 372

is in stage IIIC, then it is most likely that the patient is positive for a biomarker PDL1.
This implies that the head atom can be deduced if all body atoms are in KG. The current
version of SemDesLC utilizes AMIE [16] as a rule-mining approach. SemDesLc offers
natural language explanations of Horn rules to facilitate a more comprehensive under-
standing of the association observed in the KG by the KG Consumers. Furthermore, pro-
viding additional accessible insights would improve their understanding, enhancing trust
and usability of knowledge-based approaches.

4. Evaluation

This section evaluates the performance of SemDesLC framework focusing on its effi-
cacy and accuracy with state-of-the-art methodologies. Subsequently, an experimental
investigation of patient- and population-centric analysis is conducted to determine the
interpretability and understandability of prediction model outcomes from oncologists’
perspectives. The purpose of this analysis is to evaluate the impact and effectiveness of
integrating Semantic Web technologies with ML models, as well as to provide insights
into their applicability and prospective benefits in the field of healthcare decision-making
process. SemDesLC implementation is accessible on GitHub2 for reproducibility.
Benchmarks. In the scope of experiments, we employ an anonymized synthetic lung
cancer benchmark that comprises clinical data extracted from heterogeneous sources
such as publications, clinical trials, and clinical records representing patients diagnosed
with lung cancer. The benchmark includes 1242 patients with different medical charac-
teristics. Table 1 represent the statistics of the LC KG and a subset of patient counts with
features and their values documented in benchmark KG. Each patient is uniquely identi-
fied (a.k.a, EHR) with characteristics like a smoking habit (e.g., Current Smoker), demo-
graphic information, cancer mutation (e.g., EGFR), cancer stage (e.g., IVB). The bench-
mark also includes knowledge about drug-treatment assessment with certain START and
END dates. Additionally, a score (a.k.a, performance status) is assigned to each pa-
tient, describing the patient’s ability to perform daily physical activities. The bench-
mark comprises primarily young aged lung cancer patients, with 754 experiencing a

2https://github.com/SDM-TIB/SemDesLC
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relapse and 526 completing follow-up without relapse; experts recommended the fea-
tures to train predictive models for analyzing relapse. Further, the team of KG builders,
analysts, and consumers evaluated together the medical guidelines for LC treatments
and defined a simplified SHACL schema with 6 shapes representing 15 constraints.
Baselines. We created baselines to evaluate pipeline findings, such as KG creation,
data quality checks, federated query processing, predictive models, and interpretabil-
ity. We employ Morph-KGC [10], RMLMapper [12], and SDM-RDFizer [11] to create
KGs. SHACL2SPARQL [17,15], Shaclex [14], and TravSHACL [13] are utilized to val-
idate data on specific medical protocols expressed as a SHACL schema. Random Forest
and Decision Trees models are trained and assessed for prediction tasks. Additionally,
SHAP [4] and LIME [5] frameworks offer both local and global explanations to under-
stand ML model decisions. ANAPSID [18], DeTrusty [19], and FedX [20] are evaluated
for their ability to retrieve knowledge from a federation of KGs.
Experimental Environment. The experiments are performed in a dockerized environ-
ment, i.e., all the engines and data sources are executed in their respective Docker con-
tainers. The experiments are executed on an Ubuntu 16.04.6 LTS 64-bit machine with
two Intel® Xeon® Platinum 8160 2.10 GHz CPUs, and 755 GiB DDR4 RAM. KGs are
served using Virtuoso 7.20.3238. Each instance of Virtuoso is set up to use up to 16 GiB
of memory. MySQL 8.0.19 is utilized as a relational database to store synthetic data.
Settings for KG Creation. SDM-RDFizer v4.7.3.4, Morph-KGC v2.7.0, and RMLMap-
per v6.0.0 are evaluated over synthetic data. The experiments are run ten times. The ex-
ecution time and memory usage are reported and compared in box plots.
Settings for KG Validation. SHACL2SPARQL, shaclex, and Trav-SHACL are evalu-
ated over the defined SHACL schema. The experiments are run ten times. We report the
average execution time and standard deviation per validation engine.
Settings for Federated Query Evaluation. The efficacy of ANAPSID, DeTrusty, and
FedX is studied based on ten queries. Each query is executed ten times with each feder-
ated query engine. The average execution time and standard deviation are reported.
Settings for Predictive Models. We utilize an ensemble learning classifier, i.e., Random
Forest (RF), to train our predictive models over the benchmark with optimized hyperpa-
rameters (e.g., maximum depth of the tree is 6) obtained from AutoML3. In SemDesLC,
the predictive model uses 5-fold cross-validation (CV) technique [21], and after each
fold; over 20 relevant features were traced from the trained predictive model. Further,
these relevant features are utilized to train a decision tree classification model, to improve
the interpretability of the trained random forest model decisions. SemDesLC divides the
training and test data sets into 70% training and 30% test sets, a common approach in
ML. We assess the performance of the predictive models in terms of evaluation metrics
such as Recall, Precision, F1-score, and Support. Recall depicts the ratio of counts of
correctly predicted patients in Relapse class to total patient count with the target class
Relapse in the benchmark. Precision is the ratio of accurately predicted patients in Re-
lapse class to those projected to have class Relapse. The same evaluation parameters are
used to categorize lung cancer patients as having No Relapse.
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(a) SDM-RDFizer Execution time (b) Morph-KGC Execution time (c) RMLMapper Execution time

(d) SDM-RDFizer Memory Usage (e) Morph-KGC Memory Usage (f) RMLMapper Memory Usage

Figure 4. Results of KG Creation Engines. SDM-RDFizer and Morph-KGC can generate the KG in less than
ten seconds. Morph-KGC has the lowest execution time. SDM-RDFizer has the lowest memory usage, with a
difference in order of magnitude compared to the other engines. RMLMapper presents the highest execution
time and memory usage, with a difference in execution time of an order of magnitude.

4.1. Results.

Effectiveness in KG Creation. The results of measuring the execution time and mem-
ory usage of KG creation engines SDM-RDFizer, Morph-KGC, and RMLMapper can
be seen in Figure 4. SDM-RDFizer and Morph-KGC outperform RMLMapper by one
order of magnitude regarding execution time. SDM-RDFizer and Morph-KGC can gen-
erate the KG in less than ten seconds, with Morph-KGC being slightly faster than SDM-
RDFizer. Reason why RMLMapper takes longer to generate the KG is because it does
not have an efficient method of removing duplicates and executing join. SDM-RDFizer
outperforms Morph-KGC and RMLMapper by one order of magnitude regarding mem-
ory usage. For Morph-KGC, this high memory usage can be attributed to the fact that
Morph-KGC uses the Python library Pandas for loading and preprocessing data. Un-
fortunately, it is well-known that this library consumes a great deal of memory. Since,
SDM-RDFizer presents the lowest memory usage and a competitive execution time with
Morph-KGC, SDM-RDFizer is chosen as the KG creation engine in SemDesLC.
Efficacy in KG Validation. The results of studying the performance of the SHACL
validators SHACL2SPARQL, shaclex, and Trav-SHACL are reported in Figure 5a.
SHACL2SPARQL and Trav-SHACL outperform shaclex by two orders of magnitude.
Due to performance differences in Java and Python, SHACL2SPARQL is slightly faster
than Trav-SHACL. Figuera et al. [13] demonstrate this fact with a Python implementa-
tion of the SHACL2SPARQL approach. Since the SemDesLC framework is implemented
in Python Trav-SHACL has a richer feature set compared with SHACL2SPARQL. It was
determined that Trav-SHACL is the optimal choice for the role of SHACL validator.
Efficacy in Federated Query Evaluation. Figure 5b shows the execution times for the
three federated query engines ANAPSID, DeTrusty, and FedX for the ten queries from
the benchmark. DeTrusty and FedX are capable of executing all queries and also outper-
form ANAPSID. Due to limited feature support, ANAPSID fails to execute some of the

3https://www.automl.org/
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(a) KG Validation (b) Federated Query Evaluation

Figure 5. Result of KG Validation and Federated Query Evaluation. In Figure 5a, SHACL2SPARQL
and Trav-SHACL perform similarly, with SHACL2SPARQL being slightly faster; both outperform shaclex by
two orders of magnitude. In Figure 5b, DeTrusty and FedX are capable of executing all queries. DeTrusty
outperforms all engines in seven out of ten queries. FedX is slightly faster than DeTrusty in three of ten queries.

queries, i.e., the queries using the VALUES clause or aggregates. DeTrusty outperforms
FedX in seven of the ten queries. For the other three queries, FedX is slightly faster
than DeTrusty. For query Q5, FedX is just a little faster than DeTrusty. However, FedX
produces too many results for that query, not correctly applying the DISTINCT modi-
fier. The answer provided by FedX includes each answer thrice. Due to the good overall
performance and rich feature set, DeTrusty is integrated into SemDesLC.
Effectiveness in Predictive Model Evaluation and Interpretable Insights. We seman-
tically documented and traced the trained predictive model as described in section 3 to
generate the SemDesLC KG. The model behavior, local and global explanations are rep-
resented as RDF factual statements in the SemDesLC KG. Table 1 depicts the statistics
of the SemDesLC KG. Executing SPARQL queries on the SemDesLC KG reveals the
results for a specific patient or sub-population, additionally, predictive model character-
istics like input features, classification reports, CV folds, hyperparameters, and predic-
tion probabilities for each target class. In our predictive task of Relapse occurrence, the
RF model showcased good performance across 5-fold cross-validation, demonstrating
the robustness and generalization of the relapse classification problem. Table 2 shows
minimal variance in Precision, Recall, and F1-scores across multiple folds, indicating
the model’s stability and reliability across subsets of data. Moreover, the precision score
ranges from 0.83 to 0.87, exhibiting the random forest model’s ability to reduce false
positives and accurately classify patients into target classes. Similarly, the recall metric
showcases values ranging from 0.71 to 0.75, indicating the model’s reliability in captur-
ing the most relevant instances across multiple folds and reducing false negatives. Never-
theless, the SemDesLC pipeline traced the relevant features from the RF model. Further,
the list of features is utilized to train the Decision Tree model to classify a lung cancer
patient in classes - Relapse and No Relapse. Table 2 represents the classification report,
demonstrating the strong performance across both Relapse and No Relapse classes, in-
cluding additional metrics such as Support, Macro, and Weighted average. However, the
Decision Tree model is trained using a balanced class distribution, with 519 lung cancer
patients per target class. Thus, ensures balanced performance and prevents over-fitting.
For the Relapse class, the precision score is 0.86, revealing that 86% of lung cancer pa-
tients experience relapse. The recall score for Relapse is 0.60, suggesting that the model
correctly predicted 60% among all patients having a relapse in the data. F1-score for
Relapse and No Relapse is 0.71 and 0.78 respectively, reflecting a harmonious balance
between precision and recall. SemDesLC pipeline utilizes LIME and SHAP to provide a
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Table 2. Evaluation Results. Relapse prediction task for patients with lung cancer. The table on the left shows
5-fold cross-validation (CV) results for a random forest model, including Precision, Recall, and F1-score. The
table on the right displays a decision tree-generated classification report for Relapse and No Relapse, including
Precision, Recall, F1-score, and Support. Support indicates the number of true instances for each target class.

Fold no. Precision Recall F1-score

1 0.83 0.75 0.79
2 0.86 0.75 0.80
3 0.86 0.73 0.79
4 0.85 0.71 0.77
5 0.87 0.72 0.79

Decision Tree Precision Recall F1-score Support

Relapse 0.86 0.60 0.71 519
No Relapse 0.69 0.89 0.78 519
macro avg 0.78 0.75 0.74 1038

weighted avg 0.78 0.74 0.74 1038

global perspective by quantifying the influence of each feature across the subsets of data.
LIME generates valuable insights by interpreting model predictions on a local level. Un-
derstanding the granularity of insights is crucial, especially in scenarios where specific
predictions have significant implications, such as "What is the likelihood of relapse for a
young female in cancer stage IIIB receiving intravenous chemotherapy?". KG analysts
revealed that features, such as smoking habit and treatment type exerted considerable
influence on the model’s outcomes. Moreover, leveraging SHAP values allows KG con-
sumers to prioritize feature selection and KG analysts can optimize model performance
for better interpretability on a global level. Additionally, symbolic learning generates
Horn rules, i.e., patterns that are used for statistical analysis, guiding KG consumers with
interpretability and natural language explanations. SemDesLC was able to mine 557 horn
rules over the synthetic data. Additionally, the pipeline generates decision trees, feature
importance, and SHACL validation decision tree plots, assisting and providing more
comprehensive interpretability of the models’ outcomes for KG consumers. Supplemen-
tary material includes SemDesLC implementation, statistical queries, decision tree plots,
and generated KGs.

5. Related Work

In healthcare, the fusion of predictive models with KGs has gained tremendous attention,
offering a promising research direction for various applications such as clinical decision-
making systems, drug-drug interaction, and patient diagnosis with personalized treat-
ment. Thus, the relevant works to our research falls under two categories:
KGs and Predictive Models in Medical domain. Predictive models [3,22] and Knowl-
edge extraction [2,23] methodologies have been widely used to solve the prediction prob-
lem in the healthcare domain. Yang et al. [24] investigate the use of machine learning
techniques such as decision trees and deep neural networks to analyze how clinical sta-
tus and demographics influence the survivability of a patient with early-stage cancer.
One of the most similar studies to ours investigates the use of predictive models such
as random forests for tailored healthcare applications. By modeling patient-level and
patient-episode health records [25], the authors create ensemble-based predictive models
for diagnosing dementia and offering individualized therapies based on LIME [5] inter-
pretations. They explain how their approach might help clinicians with dementia detec-
tion and therapy recommendations. Chandak et al. [26] propose the notion of PrimeKG,
which integrates structured clinical concepts from heterogeneous data sources, detail-
ing 17,080 diseases and their relationships reflecting biological processes, experimental
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medications, and protein perturbations. They present a methodology that uses PrimeKG
to predict patient drug-disease outcomes and provides treatment suggestions with textual
descriptions. The authors [27] offer a methodology for creating and improving health-
care knowledge graphs using rule-based systems, entity-linking techniques, and machine
learning algorithms. Despite advances in understanding multiple prognostic features,
there is no clear consensus on how and which of these features should be integrated for
relapse prediction. Various approaches [6,28] propose several guidelines and challenges
from the perspective of end consumers. The aforementioned work illustrates the gaps and
limitations of comprehending and evaluating predictive model forecasts. For instance,
consumers such as oncologists, continue to lack effective frameworks for estimating a
patient’s likelihood of relapse in the early stage of treatment and translating back to the
original characteristics of a lung cancer patient.
Semantic Web Technologies in Medical domain. In the context of Semantic Web (SW)
technologies, Ristoski et al. [29] surveyed the potential for linking and integrating data
from multiple sources, enabling effective data mining and knowledge discovery. Addi-
tionally, the deductive system (DS) proposed in [30] identifies drug-drug interactions
caused by combining multiple drugs. In their work, the approach focuses on the applica-
tion of KG-based machine learning methods for drug discovery. The authors use graph
neural networks to predict molecular properties and discover possible therapeutic can-
didates, achieving breakthrough performance. Moreover, technologies such as ontolo-
gies play a crucial role in defining background knowledge and metadata related to the
application domain. A semantic-based approach such as Knowledge4COVID-19 [27]
analyzes drug-drug interactions via extracting entities and relations related to COVID-
19 from Drugbank. Later, the Knowledge4COVID-19 KG is utilized to perform down-
stream tasks such as predicting interactions, treatment recommendations for curing the
COVID-19 virus, and services to visualize the impact of a treatment drug. In [2], authors
propose De4LungCancer, a health data ecosystem that utilizes controlled vocabularies
and ontologies for knowledge management and analytics to describe the medical history
of lung cancer patients. Furthermore, the data ecosystem utilizes the RML mapping en-
gine [11] to build KGs from heterogeneous data sources with mapping assertions.
SHACL technologies can be used to validate data over KGs for quality assessment. An
efficient SHACL validation engine [13] shows the best performance in planning and ex-
ecuting SHACL shape schema to determine whether entities (i.e., patients) from KGs
comply with specific medical protocols. Moreover, neuro-symbolic approaches have
shown significant achievement with enhanced performance and explainability of predic-
tive models in the biomedical domain. Rivas et al. [31] demonstrate the fusion of nu-
merical and symbolic learning for the prediction problem of treatment effectiveness over
lung cancer KG. Further the relevant works [32,33] close to ours, investigate the impact
of documenting and tracing predictive models on lung cancer prediction to address the
issues of interpretability of decision-support systems. The authors use a federated query
engine, DeTrusty [19], to extract the medical characteristics of a lung cancer patient
and their insights into ML model predictions. The proposed interpretable framework fa-
cilitates oncologists to improve their understanding of the model’s outcomes and rec-
ommends patients with early treatment procedures. Thus, the interpretability of the ML
model is essential for consumer’s trust in technologies. Similarly, SemDesLC resorts to
SW technologies by semantically describing predictive models to ensure trust and allow
consumers to interpret the model decisions for the prediction problem of LC relapse.
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6. Discussion

SemDesLC shows a diverse range of analyses for various KG users. Furthermore, it was
also demonstrated that identifying KG users’ requirements improved the performance
of SemDesLC. Figure 4 and Figure 5a show that efficiently creating and validating KGs
improves predictive model performance and enables us to answer the RQ1) and RQ2).
Figure 5b displays the influence of the federated KGs, offering insights into how the in-
stance was specified in the input KG, as well as the prediction models allowing to answer
RQ3). The predictive model evaluation answers RQ4), highlighting the model’s effec-
tiveness in accurately categorizing lung cancer patients into target classes. Responding
to RQ5), KG consumers indicated high satisfaction with the interpretability of the LC
use case and found SemDesLC to be informative in encouraging trust and traceability of
the ML model decisions. Understanding the most important features provides actionable
insights for knowledge engineering and model refinement. Further, extending the use of
these predictions beyond classification problems offers new opportunities. Survival anal-
ysis can predict patients’ long-term prognosis, enabling personalized treatment options.
Moreover, leveraging the model’s predictive capabilities for link prediction problems
may entail investigating complex relationships between mutations, and patient medical
history, ultimately improving our understanding of relapse response. These efforts show
great potential for broadening the discipline of healthcare.

7. Conclusions and Future Work

In contrast to the state-of-the-art approaches presented in this work, SemDesLC proposes
an independent methodology. As previously stated, it is crucial to differentiate between
distinct KG users and to consider the evaluations in which these different users are in-
terested. The current work presents a series of empirical evaluations for each KG user.
SemDesLC has been made available to different KG users for evaluation and feedback.
In particular, two KG Builders participated in the process intending to assess the perfor-
mance of the tools and software required by the KG Builder. It was demonstrated that
it is critical to determine the efficacy of KG creation and validation of the input data to
ensure the optimal functioning of the approach, which includes the use of scalable tech-
nologies. Furthermore, two KG Analysts evaluated the predictive models’ performance
on the synthetic data to identify interpretable insights. Finally, three KG consumers pro-
vided feedback on their understanding of the predictive model results and the natural
language explanations offered by SemDesLC for patient- and population-centric analy-
ses that meet the requirements of KG Consumers. However, in future work, additional
surveys will be distributed to various KG users. The goal is to obtain more insight into
the proposed methodology and assess its efficacy and performance in different domains.
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Endpoint. In: The Semantic Web – ISWC 2019. Cham: Springer; 2019. p. 145-63.

[18] Acosta M, Vidal ME, Lampo T, Castillo J, Ruckhaus E. ANAPSID: An Adaptive Query Processing
Engine for SPARQL Endpoints. In: The Semantic Web – ISWC 2011. Berlin, Heidelberg: Springer;
2011. p. 18-34.

[19] Rohde PD, Bechara M, Avellino. DeTrusty v0.15.6; 2024.
[20] Schwarte A, Haase P, Hose K, Schenkel R, Schmidt M. FedX: Optimization Techniques for Federated

Query Processing on Linked Data. In: The Semantic Web – ISWC 2011. Berlin, Heidelberg: Springer;
2011. p. 601-16.

[21] Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Statistics Surveys.
2010 Jan;4(none). Available from: http://dx.doi.org/10.1214/09-SS054.

[22] Pan L, Liu G, Lin F, Zhong S, Xia H, Sun X, et al. Machine learning applications for prediction
of relapse in childhood acute lymphoblastic leukemia. Scientific Reports. 2017;7. Available from:
https://api.semanticscholar.org/CorpusID:26489344.

Y. Chudasama et al. / Semantically Describing Predictive Models 157

https://doi.org/10.1200/CCI.22.00062
https://doi.org/10.1609/aimag.v39i2.2802
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://github.com/weso/shaclex
https://ceur-ws.org/Vol-2456/paper43.pdf
https://ceur-ws.org/Vol-2456/paper43.pdf
http://dx.doi.org/10.1214/09-SS054
https://api.semanticscholar.org/CorpusID:26489344


[23] Vidal ME, Niazmand E, Rohde PD, Iglesias E, Sakor A. In: Challenges for Healthcare Data Analytics
Over Knowledge Graphs; 2023. .

[24] Yang Y, Xu L, Sun L, Zhang P, Farid SS. Machine learning application in personalised lung cancer recur-
rence and survivability prediction. Computational and Structural Biotechnology Journal. 2022;20:1811-
20.

[25] Vyas A, Aisopos F, Vidal ME, Garrard P, Paliouras G. Identifying the presence and severity of de-
mentia by applying interpretable machine learning techniques on structured clinical records. BMC
Medical Informatics Decis Mak. 2022;22(1):271. Available from: https://doi.org/10.1186/
s12911-022-02004-3.

[26] Chandak P, Huang K, Zitnik M. Building a knowledge graph to enable precision medicine. bioRxiv.
2022. Available from: https://www.biorxiv.org/content/early/2022/05/01/2022.05.01.
489928.

[27] Sakor A, Jozashoori S, Niazmand E, Rivas A, Bougiatiotis K, Aisopos F, et al. Knowledge4COVID-19:
A semantic-based approach for constructing a COVID-19 related knowledge graph from various sources
and analyzing treatments’ toxicities. Journal of Web Semantics. 2023;75:100760.

[28] Suh A, Appleby G, Anderson EW, Finelli L, Chang R, Cashman D. Are Metrics Enough? Guidelines
for Communicating and Visualizing Predictive Models to Subject Matter Experts. IEEE Transactions
on Visualization and Computer Graphics. 2023:1-16.

[29] Ristoski P, Paulheim H. Semantic Web in data mining and knowledge discovery: A comprehensive
survey. J Web Semant. 2016.

[30] Rivas A, Vidal ME. Capturing Knowledge about Drug-Drug Interactions to Enhance Treatment Effec-
tiveness. In: Proceedings of the 11th Knowledge Capture Conference. K-CAP ’21. New York, NY, USA:
Association for Computing Machinery; 2021. .

[31] Rivas A, Collarana D, Torrente M, Vidal ME. A neuro-symbolic system over knowledge graphs for
link prediction. Semantic Web Journal Special Issue on Neuro-Symbolic Artificial Intelligence and the
Semantic Web. 2023:1-25.

[32] Chudasama Y, Purohit D, Rohde PD, Gercke J, Vidal ME. InterpretME: A Tool for Interpretations of
Machine Learning Models Over Knowledge Graphs. Semantic Web Journal Special Issue on Tools &
Systems. 2024.

[33] Chudasama Y, Purohit D, Rohde PD, Vidal ME. Enhancing Interpretability of Machine Learning Models
over Knowledge Graphs. In: Keshan N, Neumaier S, Gentile AL, Vahdati S, editors. Proceedings of the
Posters and Demo Track of the 19th International Conference on Semantic Systems co-located with 19th
International Conference on Semantic Systems (SEMANTiCS 2023), Leipzig, Germany, September 20
to 22, 2023. vol. 3526 of CEUR Workshop Proceedings. CEUR-WS.org; 2023. Available from: https:
//ceur-ws.org/Vol-3526/paper-05.pdf.

Y. Chudasama et al. / Semantically Describing Predictive Models158

https://doi.org/10.1186/s12911-022-02004-3
https://doi.org/10.1186/s12911-022-02004-3
https://www.biorxiv.org/content/early/2022/05/01/2022.05.01.489928
https://www.biorxiv.org/content/early/2022/05/01/2022.05.01.489928
https://ceur-ws.org/Vol-3526/paper-05.pdf
https://ceur-ws.org/Vol-3526/paper-05.pdf

