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Abstract. Knowledge Graphs (KGs) are relational knowledge bases that represent
facts as a set of labelled nodes and the labelled relations between them. Their ma-
chine learning counterpart, Knowledge Graph Embeddings (KGEs), learn to pre-
dict new facts based on the data contained in a KG – the so-called link prediction
task. To date, almost all forms of link prediction for KGs rely on some form of
embedding model, and KGEs hold state-of-the-art status for link prediction. In this
paper, we present TWIG-I (Topologically-Weighted Intelligence Generation for In-
ference), a novel link prediction system that can represent the features of a KG in
latent space without using node or edge embeddings. TWIG-I shows mixed perfor-
mance relative to state-of-the-art KGE models – at times exceeding or falling short
of baseline performance. However, unlike KGEs, TWIG-I can be natively used for
transfer learning across distinct KGs. We show that using transfer learning with
TWIG-I can lead to increases in performance in some cases both over KGE base-
lines and over TWIG-I models trained without finetuning. While these results are
still mixed, TWIG-I clearly demonstrates that structural features are sufficient to
solve the link prediction task in the absence of embeddings. Finally, TWIG-I opens
up cross-KG transfer learning as a new direction in link prediction research and
application.
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1. Introduction

Knowledge Graphs (KGs) are knowledge bases that represent data as (s, p,o) triples,
where s and o are nodes and p describes the directed, labelled edge between them [1].

This graphical format has allowed KGs to naturally represent a large variety of real-
world data, including social networks, computer networks, biological networks, linguis-
tic data, climate data, general knowledge, and much more [2,3,4,1,5,6]. Recently, larger
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Figure 1. A pictorial overview of the TWIG-I structure-based link predictor.

and larger KGs have been published, leading to substantial growth in big graph data and
KGs that can contain millions or even hundreds of millions of triples [7,8,9,10].

The result of the increasing size and scale of KGs is a need for improved learning
systems on these graphs. As a response to this, Knowledge Graph Embeddings (KGEs)
have been developed to model the latent properties and meaning contained in KGs. KGEs
learn to represent every node and every edge in a KG as a unique embedded vector. These
embeddings are then used to predict new statements that belong to the graph to facilitate
searching and exploring its data [1,11,12]. This is called the “Link Prediction task”, and
KGEs currently are considered state-of-the-art in link prediction [13,14,15].

Previous work has shown that KGEs, despite their success, have limitations – that
node/edge embeddings are learned largely from a very short, often 1-hop, range [16,
17,18,19], and that the output of KGEs can be understood and replicated using only
the structure of the KG with no accounting for its internal semantics or meaning [16].
Further, all KGE systems known to the authors are made to predict statements on only
one graph at a time, and therefore by design do not support transfer learning [13,14,15].

In response to this, recent literature has proposed a structure-based, rather than
embedding-based, approach to the link prediction task [16]. In particular, the Topologically-
Weighted Intelligence Generation (TWIG) model works by using a set of 1-hop and 2-
hop structural features around a triple to predict the rank a KGE system will assign to it –
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a task it can achieve with high accuracy [16]. The authors used this evidence to propose
that KG learning and link prediction may be possible using only structural features [16].

In this paper, we follow up on this research and demonstrate that structure-only,
embedding-free KG learning is a viable direction for link prediction. Since our structure-
based learning model is based on a fixed set of structural features [16], we are able to
natively and directly apply TWIG-I in the transfer-learning setting across different KGs.
Such transfer learning is something that state-of-the-art KGE systems cannot do. Using
TWIG-I in transfer learning can (but does not universally) improve performance over
KGE baselines and over TWIG-I models trained without transfer learning. All code and
data are available here: https://github.com/Jeffrey-Sardina/TWIG-I-v1.0.

2. Preliminaries

2.1. Learning Knowledge Graphs

Most learning on KGs is done using Knowledge Graph Embeddings [1,11,12,20,14].
KGEs assign vector embeddings to each node and relationship such that new, likely-true
triples can be predicted using the mathematical properties of the embeddings themselves;
this is called the “link prediction task” [1,11,12,20,14]. KGE models are composed of
three core components: the scoring function, the negative sampler, and the loss function.

The scoring function, denoted f (es,ep,eo)→ R is a function that takes as input the
embeddings of a triple (i.e. of its subject, predicate, and object) and converts them into
a scalar-valued score. Higher scores indicate that the input triple is considered more
plausible [11,12,14]. The negative sampler is used during training to provide “negative”
or “corrupted” triples in the form (s′, p,o) or (s, p,o′), where s′ and o′ are sampled entities
from the Knowledge Graph [11,12,14]. The scores of all positive and negative triples
are used as inputs to the loss function, which aims to reward the KGE system when true
triples have higher scores than negative triples, and to penalise it if not [11,12,14].

This standard KGE pipeline has reached state-of-the-art results, most notably in the
KGE model ComplEx [13]. The DistMult and TransE models, based on dot products and
vector translation for scoring respectively, are common baselines [11,12] but (especially
in the case of TransE) tend to lag behind the performance of ComplEx [13,21,15].

Other methods for learning on KGs exist; most notably, there are Graph Neural
Networks (GNNs) [22,23,24,25,26], logic- / rule- based methods [27,28], and sequence-
based approaches [29,30]. Of these methods, only logic-based methods can operate in
the embedding-free manner as they produce predictions by using inductive learning to
construct logical rules that apply to entity and relationship types in general. Overall,
however, the most commonly used, most studied, and highest-performance techniques
for learning KGs tend to come from the KGE family [14,13,15,1].

2.2. Motivation for TWIG-I

Existing literature on KGEs (and most other graph learning methods) use a form of
learned embedding to represent the nodes and edges of a KG. This means that even
nodes with very low information content, of which there are typically many, are as-
signed the same number of latent features as high-information-context nodes [31,32].
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In other words, a huge amount of the parameter space of KGE models is filled with
low-information-content / noisy data, which can lead to lowered performance [31,32].

Existing literature on KGEs show that the output of KGEs can be predicted with
high fidelity via simulation of the KGE process in which the only input data is localised
KG structure [16]. This approach, called Topologically-Weighted Intelligence Genera-
tion (TWIG), suggests that it is possible to replace attempts at embedding-based learn-
ing of KGs with structural learning of KGs (based on TWIG-like neural network). Other
work on KGE poisoning attacks [17,18] and structure-based KG analysis of KGs and
KGEs [32,31,19] provide theoretical and empirical evidence for the success of such a
structure-based approach – they all document (from different perspectives) the fact that
KGEs learn to embed nodes and edges based almost exclusively on the properties of
neighbour nodes in a 1- to 2- hop distance around each node and edge. Other related
works suggest that the optimal choice of some elements of KGE models, such as the
negative sampler and loss function, are functions of KG structure [33,34,35,36].

Taken together, this suggests that applying what is called the “twiggy methodology”
[16] to link prediction itself, rather than simulation of KGEs, could result in a signifi-
cantly more powerful link predictor with only a tiny fraction of the parameter cost.

Finally, to the knowledge of the authors, no existing KGE models can be fine-tuned
to predict links on new KGs not seen during pre-training (the so-called “transfer learn-
ing” setting); existing models assume that link prediction will be done on only one KG
at a time [11,20,14,37,13]. We highlight that this limitation comes from the creation of
embeddings for the nodes and edges of a specific graph, which cannot be readily trans-
ferred to another KG. Since TWIG-I takes a fixed set of structural features as input, we
highlight that TWIG-I natively supports transfer learning across diverse KGs.

3. Methodology

In this section, we explain in detail how TWIG-I operates. We first examine how we
selected structural features from a KG that it can use to learn, and then document its
neural architecture and learning system in full. Finally, we explain the KG datasets and
baselines we used to evaluate TWIG-I.

3.1. Selection of Structural Features

The selection of structural features was guided principally by existing research that sug-
gests that a 1- to 2- hop range around a triple is most important for how it is learned
[31,19,17,18,16]. Specifically, we adopt the same structural features used by the original
TWIG paper [16]. For reference, the canonical TWIG features for every triple in the KG
come in two main types – “fine-grained” features at the 1-hop range (the triple in ques-
tion) and “coarse-grained” features at the 2-hop range (all triples connecting to the triple
in question). Fine-grained features focus on the properties of the triple elements them-
selves – such as the degree of the subject and object nodes in the triple. Coarse-grained
features collect aggregate statistics of the triples surrounding the triple in question – for
example, the degrees of the highest- and lowest- degree nodes connected to the triple.

There are a total of 6 fine-grained features and 16 coarse-grained features, for a total
of 22 features. A full enumeration of all features and what they represent, delimited by
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Table 1. A summary of all input features used, and their definitions, in TWIG-I. All features values are calcu-
lated using the structure of the training set only.

Feature Meaning

fine-grained fts

s deg The degree of the subject node
o deg The degree of the object node
p freq The frequency of the predicate
s-p cofreq The number of times the given subject and predicate co-occur
o-p cofreq The number of times the given object and predicate co-occur
s-o cofreq The number of times the given subject and object co-occur

coarse-grained fts

s min deg neighbour The degree of the lowest-degree neighbour of the subject
s max deg neighbour The degree of the highest-degree neighbour of the subject
s mean deg neighbour The degree of the mean-degree neighbour of the subject
o min deg neighbour The degree of the lowest-degree neighbour of the object
o max deg neighbour The degree of the highest-degree neighbour of the object
o mean deg neighbour The degree of the mean-degree neighbour of the object
s num neighbours The total number of neighbours the subject has
o num neighbours The total number of neighbours the object has
s min freq edge The frequency of the least-frequent edge linked to the subject
s max freq edge The frequency of the most-frequent edge linked to the subject
s mean freq edge The mean frequency of edges linked to the subject
o min freq edge The frequency of the least-frequent edge linked to the object
o max freq edge The frequency of the most-frequent edge linked to the object
o mean freq edge The mean frequency of edges linked to the object
s num edges The total number of edges incident on the subject
o num edges The total number of edges incident on the object

type, is given in Table 1. Figure 2a gives a pictorial overview of the regions of a graph
that are samples for fine-grained (highlighted in red) or coarse-grained (highlighted in
blue) features, as well as regions of the graph (in black) that are not sampled for features.

3.2. The TWIG-I Model

Neural Architecture. TWIG-I is a simple neural network with three dense layers, struc-
tured as shown in Figure 2b. Input data is a feature vector representing a triple, with 22
structural features as noted in the previous section. All input data is z-score normalised
before being input to TWIG. In the TWIG neural network, this input data is first passed
through the two dense layers of constant size. The third and final dense layer outputs a
single scalar value that is treated as a plausibility score. This plausibility score is finally
passed through a sigmoid layer so that all scores lie on the range [0,1].

Negative Sampling. When training TWIG-I, we follow the standard KGE practice
of negative sampling, which involves creating synthetic, likely-false triples as counterex-
amples during training by randomly replacing the subject or the object of the triple with
another node from the graph [11,12,14]. This process can be concisely phrased as the fol-
lowing: for every triple (s, p,o), generate a set of triples in the form (s′, p,o) and (s, p,o′)
where s′ and o′ are randomly chosen entities from within the KG. When scoring negative
triples, their feature vectors are calculated exactly as is done for true triples.
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(a) Sample depiction of the structural fea-
tures used by TWIG-I. Elements shown in
red are are a 1-hop distance from the triple;
those shown in blue are at a 2-hop distance
from the triple; all other elements are un-
used.

(b) Depiction of the TWIG-I link prediction
model.

Figure 2. An overview of TWIG-I system, including a input data (left) and neural architecture (right).

Loss Function and Learning. Every time we evaluate TWIG-I on a batch, we gen-
erate negatives for all triples in the batch. All of these triples (positive and negative) are
then scored using the TWIG neural network. With this set of scores of true triples and
of negative triples, we compute a loss value via the Margin Ranking Loss (sometimes
called “Pairwise Hinge Loss”) loss function, a loss function that has shown considerable
success with KGEs on the link prediction task [34,14,35].

The Margin Ranking Loss (MRL) loss function is defined as follows:

MRL = max((score neg− score pos+margin),0)

where score neg is the plausibility score of a negative triple output by TWIG-I,
score pos is the plausibility score of the positive triple from which the negative was
generated, and margin is the hyperparameter that defines what margin the model should
attempt to enforce between the scores of positive and negative triples. For all of our
experiments, we use a margin value of 0.1. The minimisation of this loss requires that
TWIG-I learn to assign higher scores to true triples, and lower scores to negatives.

3.3. Evaluation Protocol and Metrics

For evaluation, we used the standard link prediction metric Mean Reciprocal Rank
(MRR), which is defined in terms of ranked output for a link predictor [14,35]. To pro-
duce this ranked output in the evaluation phase, negatives are generated for an input triple
by corrupting the subject and object, one at a time, with all the other entities in the graph.
Any generated triples that happen to also be true (i.e. those that were in the original KG)
are filtered out. All of the remaining negatives, and the original true triples, are passed
through TWIG-I to be given plausibility scores. These scores are then sorted, and the po-
sition of the true triple among its negatives is referred to as its “rank”. 1-indexed ranking
is used, which means the best (lowest) possible rank is 1.
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Mean Reciprocal Rank calculates, for all triples in the testing set, the arithmetic
mean of the reciprocal of the ranks assigned to all true triples. This can be written as:

MRR =
1
n

(
n

∑
i=1

1
ranki

)

where n is the total number of ranks of true triples in the test set. MRR is bounded
on (0,1], where higher valued indicate better performance.

3.4. Datasets Used

When evaluating TWIG-I, we use four different benchmark KG datasets – FB15k-
237, WN18RR, CoDExSmall, and DBpedia50 [4,38,39]. We choose FB15k-237 and
WN18RR because these are the standard benchmark datasets for the link prediction task
in KGE and link prediction literature [35,14,4]. We use CoDExSmall and DBpedia50,
which are smaller KGs, to evaluate how TWIG-I in the context of more diverse KGs.

A brief overview of these datasets, and their basic structural statistics, is given in
Table 2. All datasets, their standard train-test-valid splits, and their statistics on number
of triples, nodes, and predicates are obtained from the PyKEEN KGE repository [40].

Table 2. An overview of the 4 benchmark datasets used in this study.

Dataset #Nodes #Predicates #Triples Reference

FB15k-237 14505 237 310079 Toutanova et al. [4]

WN18RR 40559 11 92583 Toutanova et al. [4]

CoDExSmall 2034 42 36543 Safavi et al. [38]

DBpedia50 24624 351 34421 Shi et al. [39]

3.5. Hyperparameter Search for TWIG-I

For each KG we run TWIG-I on, we do an independent hyperparameter grid search to
select optimal hyperparameter values for TWIG-I. For each dataset, each candidate set
of hyperparameter values is trained for 20 epochs on the dataset’s standard training split.
The resultant model is then evaluated on the dataset’s validation set in terms of MRR.
The grid searched on depends on the size of the dataset in question – for larger datasets
(i.e. FB15k-237 and WN18RR) we use a smaller grid since they are more computa-
tionally demanding. This hyperparameter grid is given in Table 3. For smaller datasets
(CoDExSmall and DBpedia50) we run on a larger hyperparameter grid, given in Table 4.

Table 3. The hyperparameter grid used for small datasets (i.e. CoDExSmall and DBpedia50).

Hyperparameter Values searched

negatives per positive 30, 100, 500

learning rate 5e-3, 5e-4, 5e-5

batch size 64, 128, 256

margin 0.1 (constant)
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Table 4. The hyperparameter grid used for larger datasets (i.e. FB15k-237 and WN18RR).

Hyperparameter Values searched

negatives per positive 30, 100, 500

learning rate 5e-3, 5e-4, 5e-5

batch size 128 (constant)

margin 0.1 (constant)

The optimal hyperparameter combinations obtained from all of the hyperparame-
ter searches for both experiment settings (standard learning and transfer learning) are
reported alongside evaluation results in the Results section.

3.6. TWIG-I Evaluation

3.6.1. Evaluation in the Standard Learning Setting

In the so-called “standard” learning setting, we do not use transfer learning, but rather
train a full TWIG-I model from scratch. In this case, we use the optimal hyperparameters
obtained from the hyperparameter search to create a new TWIG-I model and train it for
100 epochs on FB15k-237 and WN18RR. We then evaluate the model to produce its final
MRR score. All of these results are presented in the results section.

3.6.2. Evaluation in the Transfer Learning Setting

To evaluate TWIG-I’s ability to transfer learn from one KG to another, we take our
pretrained TWIG-I models that were trained on FB15k-237 and WN118RR respectively
and finetune both of them on CoDExSmall and DBpedia50. We further finetune our
pretrained FB15k-237 model to WN18RR, and our pretrained WN18RR to FB15k-237.

For all finetuning experiments, we repeat a hyperparameter search. This hyperpa-
rameter search uses the same hyperparameter grids as before; these are given in Tables
3 and 4. Finetuning is run for 20 epochs on the training set, and then evaluated on the
testing set to produce final evaluation metrics. The results of all these experiments are
shown in the Results section.

3.7. KGE Baselines

For baselines, we compare to the state-of-the-art ComplEx model [13], as well as
DistMult [41] and TransE [42], which together are the literature-standard baselines
[11,12,14,13,21,15]. We take optimal model configurations and final KGE performance
values on large datasets (FB15k-237 and WN18RR) from Ruffinelli et al.’s KGE bench-
marking experiments [35] as performing them locally was computationally infeasible.

For smaller datasets (CoDExSmall and DBpedia50) we run a hyperparameter grid
search for 100 epochs and train them on optimal hyperparameters for 1000 epochs before
evaluating on the test set. The hyperparameter grid used is given in Table 5. For more
information on KGE hyperparameters, see [14].

KGE model implementations from PyKEEN were used for these experiments [40].
In all cases, the literature standard train-test-validation splits are used for all KGs [40].
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Table 5. The hyperparameter grid used for KGEs on the smaller KGs (i.e. CoDExSmall and DBpedia50).

Hyperparameter Values Searched

loss function Margin Ranking, Binary Cross Entropy, Cross Entropy

negative sampler Basic, Bernoulli, Pseudo-typed

learning rate 1e-2, 1e-4, 1e-6

regulariser coefficients 1e-2, 1e-4, 1e-6

negatives per positive 5, 25, 125

margin 0.5, 1, 2

embedding dim 50, 100, 250

3.8. TWIG-I Baselines for Finetuning

Tr to assess the impact of finetuning rather than training a new TWIG-I model from
scratch, we further evaluate two TWIG-I baselines. For the first baseline, which we call
the “from scratch” baseline, TWIG-I is trained for 20 epochs exactly as the fine-tuned
models are. However, it is not initialised from a pre-trained model. As such, this baseline
presents how much TWIG-I can learn in a reduced number of epochs without any transfer
learning. The second baseline, which we call the “full-training” baseline, is trained for
the full 100 epochs we use in the standard learning protocol. This baseline represents
how much TWIG-I can learn when it is given a larger computational budget, but is not
able to take advantage of any knowledge from a pre-trained TWIG-I model.

4. Results

4.1. Hyperparameter Searches

Hyperparameter search on TWIG-I was done in three principle cases: for training TWIG-
I models without fine-tuning, for finetuning TWIG-I onto a new dataset from a pre-
trained FB15k-237 TWIG-I model, and for finetuning TWIG-I onto a new dataset from a
pretrained WN18RR TWIG-I model. The optimal hyperparameters for training TWIG-I
from scratch (without finetuning) are given in Table 6. The optimal hyperparameters for
finetuning TWIG-I onto a new dataset using a TWIG-I model pretrained on FB15k-237
are given in Table 7. The optimal hyperparameters for finetuning TWIG-I onto a new
dataset using a TWIG-I model pretrained on WN18RR are given in Table 8.

Table 6. Hyperparameters selected for TWIG-I on each dataset for the standard training protocol.

Dataset negatives

per positive

learning

rate

batch

size

margin

FB15k-237 100 5e-4 128 0.1

WN18RR 500 5e-3 128 0.1

CoDExSmall 100 5e-3 64 0.1

DBpedia50 30 5e-3 128 0.1

In the case of KGE models, the hyperparameter search results for CoDExSmall and
DBpedia50 on all three KGEs tested are given in Table 9.
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Table 7. Hyperparameters for finetuning to each KG from a pretrained FB15k-237 TWIG-I model.

Dataset negatives

per positive

learning

rate

batch

size

margin

WN18RR 500 5e-4 128 0.1

CoDExSmall 100 5e-3 64 0.1

DBpedia50 30 5e-4 128 0.1

Table 8. Hyperparameters for finetuning to each KG from a pretrained WN18RR TWIG-I model.

Dataset negatives

per positive

learning

rate

batch

size

margin

FB15k-237 100 5e-4 128 0.1

CoDExSmall 500 5e-3 128 0.1

DBpedia50 30 5e-4 64 0.1

Table 9. Hyperparameter values selected for each KGE model on each dataset. BCE = Binary Cross Entropy
Loss; CE = Cross Entropy Loss; MRL = Margin Ranking Loss; npp = negatives per positive; lr = learning rate;
reg coeff = regulariser coefficient; dim = embedding dimension

Loss

Function

Negative

Sampler

lr reg

coeff

npp margin dim

ComplEx

CoDExSmall MRL Bernoulli 1e-2 1e-2 125 2 100

DBpedia50 BCE Basic 1e-2 1e-2 25 N/A 100

DistMult

CoDExSmall CE Basic 1e-2 1e-2 125 N/A 250

DBpedia50 CE Bernoulli 1e-2 1e-2 125 N/A 250

TransE

CoDExSmall MRL Bernoulli 1e-2 1e-6 125 2 50

DBpedia50 CE Bernoulli 1e-2 1e-2 125 N/A 250

4.2. Standard Evaluation Setting

In order to benchmark TWIG-I against state-of-the-art KGE models in the standard learn-
ing setting (i.e. without transfer learning), we first show evaluation results of TWIG-I and
all baselines on the standard link prediction benchmark KGs FB15k-237 and WN18RR
[4], as well as on the smaller KGs CoDExSmall and DBpedia50 [38,39].

As outlined in our methodology section, results on KGE models (ComplEx, Dist-
Mult, and TransE) for FB15k-237 and WN18RR are taken from a previous benchmark-
ing study by Ruffinelli at al. [35]. Results for KGE models on smaller datasets (CoDExS-
mall and DBpedia50) were run locally on their optimal hyperparameters. For all evalua-
tions here, KGE models were run for 1000 epochs and TWIG-I was run for 100 epochs.
Link prediction performance results are shown in Table 10.

We further provide a comparison of the calculated parameter cost of our models
versus the calculated parameter cost of KGE models; this can be found in Table 11.

Looking at TWIG-I’s predictive performance, we see that TWIG-I has mixed per-
formance relative to KGE baselines. While it can, for example, substantially outperforms
KGE-based methods on CoDExSmall and generally matches their performance on DB-
pedia50, it lags notably behind state-of-the-art on the standard benchmark FB15k-237,
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Table 10. MRR performance of KGEs vs TWIG-I in link prediction. The best results are shown in bold.

Dataset FB15k-237 WN18RR CoDExSmall DBpedia50

ComplEx 0.35 0.48 0.39 0.36

DistMult 0.34 0.45 0.34 0.39

TransE 0.31 0.23 0.28 0.31

TWIG-I 0.20 0.06 0.61 0.38

Table 11. Sum of all learnable parameters and the number of input features in TWIG-I vs KGE models.

Model FB15k-237 WN18RR CoDExSmall DBpedia50

ComplEx 7,547,904 10,385,920 415,200 4,995,000

DistMult 7,547,904 20,771,840 519,000 6,243,750

TransE 7,547,904 20,771,840 103,800 6,243,750

TWIG-I 11,973,411 3,821,091 1,447,423 1,417,283

and fails to significantly learn on WN18RR. The difference in the predictive performance
of TWIG-I on these various KGs is discussed in detail in the Discussion section.

Looking at the parameter and feature cost of TWIG-I versus KGEs, we consider
the combined cost of learnable parameters and input features. This means that when
counting parameters for TWIG we include not only the learnable weights of its neural
network (of which there are only 351), but also the number of features present in all input
vectors in the training set. Since in KGEs all vectors are learned, not given, we report for
KGE models only the number of learnable parameters, calculated from their embedding
dimension and the number of nodes and edges they embed for each KG.

The aggregate parameter-and-feature usage of TWIG-I versus KGE models on each
dataset is given in in Table 11. We observe that TWIG-I can lead to either an increase or
a decrease in total parameter usage. This effect is very simple – TWIG-I produces input
features based on each triple in a KG, whereas KGEs produce input features based on
each node and edge in a KG. This means that in more dense KGs (having more triples
relative to the number of nodes/edges), TWIG-I requires more parameters – we see this
in FB15k-237 and CoDExSmall. However, in more sparse datasets (such as WN18RR
and DBpedia50), TWIG requires fewer parameters than KGE models do.

4.3. Transfer Learning Setting

We further present our evaluation of TWIG-I’s efficacy in the transfer learning setting
– a task that KGEs cannot perform as their learned embeddings are KG-specific. The
hyperparameter search results for TWIG-I are shown in Table 7 and Table 8, the hyper-
parameter results for KGE baseline are shown in Table 9, and the final evaluation results
of the transfer learning experiments are given in Table 12.

Looking at DBpedia50, the results indicate that using TWIG-I with transfer learn-
ing can allow it to match or beat the performance of KGE baselines. It achieves MRR
values of 0.45 and 0.37 on DBpedia50 when pretrained on FB15k-237 and WN18RR re-
spectively. The KGE baselines’ performance lies in a similar, but lower, range from 0.31
(with TransE) to 0.39 (with DistMult). Finally, we see that the TWIG-I model trained
for the full 100 epochs did not perform differently to the TWIG-I model trained for 20
epochs, suggesting that finetuning enables a boost in predictive performance that cannot
be achieved even with increased training time without transfer learning.
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Table 12. Evaluation of TWIG-I for transfer learning. All results are MRR values.

Model CoDExSmall DBpedia50 FB15k-237 WN18RR

ComplEx 0.39 0.36 0.35 0.48

DistMult 0.34 0.39 0.34 0.45

TransE 0.28 0.31 0.31 0.23

TWIG-I (20 epochs from scratch) 0.52 0.38 0.19 0.03

TWIG-I (100 epochs full-training) 0.61 0.38 0.20 0.06

TWIG-I finetune
(from FB15k237)

0.44 0.45 N/A 0.01

TWIG-I finetune
(from WN18RR)

0.60 0.37 0.21 N/A

On CoDExSmall, the performance of the TWIG-I model (pretrained on either
FB15k-237 or WN18RR) remains notably stronger than the performance of KGE base-
lines, reaching MRR values of 0.44 and 0.60, whereas the KGE models’ performance lies
in between 0.28 and 0.39. Without finetuning, TWIG-I achieves MRR scores of 0.52 and
0.61 in the 20-epoch and 100-epoch settings. This indicates that using finetuning (from
a TWIG-I model pretrained on WN18RR) can match the performance of longer-epoch
training paradigms on CoDExSmall by using structural knowledge from a different KG.

Similar to our standard evaluation results, TWIG-I lags behind state-of-the-art KGEs
on both FB15k-237 (where it has an MRR of 0.21 at best) and WN18RR (where its MRR
is near 0). From these results, it is unclear whether finetuning from WN18RR to FB15k-
237 leads to a significant change in performance. However, it seems that finetuning from
FB15k-237 to WN18RR leads to reduced performance, from 0.06 to 0.01,indicating that
using finetuning with TWIG-I does not always lead to increased predictive performance.

The theoretical and practical implications and the limitations of TWIG-I-based
transfer learning across KGs are examined further in the Discussion section.

5. Discussion

TWIG-I uses a simple neural network to learn the structural features of a knowledge
graph. We identify two core insights of the TWIG-I learning paradigm:

1. TWIG-I allows link prediction to be explicitly correlated with the topological
properties of the KG it is learning, and

2. TWIG-I provides a way to achieve transfer learning across knowledge graphs
which can lead to increased predictive performance in some (but not all) experi-
mental settings.

In this section, we discuss these insights in greater detail and show that the link
prediction task can be achieved by learning the knowledge graph structure, as opposed
to traditional embedding-based KGE approaches.

5.1. Learnability, Graph Topology, and Model Performance

TWIG-I introduces a learning approach leveraging graph structural information, focusing
on structural features within a triple and its adjacent triples. In other words, we examine
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(a) A subset of FB15k-237, in a 2-hop
radius from a median-degree node.

(b) A subset of CoDExSmall, in a 2-
hop radius from a median-degree node.

(c) A subset of WN18RR, in a 2-hop
radius from a median-degree node.

(d) A subset of WN18RR, in a 3-hop
radius from a median-degree node.

(e) A subset of DBpedia50, in a 4-hop
radius from a median-degree node.

(f) A subset of DBpedia50, in a 6-hop
radius from a median-degree node.

Figure 3. Structurally-representative subsets of FB15k-237, WN18RR CoDExSmall, and DBpedia50.
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Table 13. Degree distribution statistics for the training sets of all KGs tested.

Degree CoDExSmall DBpedia50 FB15k-23 WN18RR

minimum 10 1 1 1

25th percentile 15 1 11 2

median 17 1 22 3

75th percentile 25 2 41 5

maximum 1008 781 7614 482

link prediction as a solely structural task – the model’s learning objective is attuned
towards learning structural variations in the local subgraph around a triple.

To more fully explain the mechanism by which TWIG-I learns (or fails to learn),
we analyze its performance regarding representative subsets of all KGs it was tested on,
presented in Figure 3. To further highlight structural disparities, we also provide higher
n-hop neighbourhood subgraphs for WN18RR and DBpedia50. In all cases, the subgraph
is the region around an arbitrary node of median degree. Finally, we present the general
connectivity statistics of each graph in Table 13.

We see that FB15k-237 and CoDExSmall are more connected graphs with a richer
local graph topological structure and with easily identifiable clusters of separated and
interconnected nodes. We further note that the large median degree of these graphs leads
to many more triples being in the local neighbourhood of other triples. Together, this
leads to large and structurally diverse subgraphs. We hypothesise that this may lead to
better parameterisation and distinguishability by TWIG-I’s structural features. In partic-
ular, this could explain TWIG-I’s high performance on CoDExSmall, and why its per-
formance on FB15k-237 exceeds its performance on WN18RR.

WN18RR and DBpedia50 are much more sparse knowledge graphs: they tend to
contain hyperlocalised subgraphs with a “hub-and-spoke” edge distribution. The rela-
tively uniform graph structure, combined with the generally smaller size of the subgraphs
around each triple, could possibly provide less topological information that can be rep-
resented or learned by TWIG-I. While this hypothesis explains TWIG-I’s poor perfor-
mance on WN18RR, it does not explain why TWIG-I does comparatively well on DB-
pedia50 – a question that is left open for future research.

5.2. Transfer Learning Across Knowledge Graphs

As shown in Table 12, finetuning results in an increase in performance compared to the
state-of-the-art in some, but not all, cases. The results indicate that TWIG-I performs
differently in transfer learning depending on both the source graph (used to pretrain
TWIG-I) and the destination graph (on which link prediction was performed).

Looking at the connectivity statistics in Table 13 and the subgraph visualisation
in Figure 3, we see that CoDExSmall and FB15k-237 have a generally comparable
structure. Similarly, DBpedia50 and WN18RR have comparable structures. Surprisingly,
however, TWIG-I models pretrained on FB15k-237 perform better when finetuned on
DBpedia50 than on CoDExSmall, and TWIG-I models pretrained on WN18RR perform
better when finetuned on CoDExSmall than on DBpedia50. While this initially suggests
there may be a preference for diversity in structure between pretraining and finetuning,
more research is needed before any definitive conclusions can be drawn. e
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5.3. Future Directions

We see TWIG-I as a primarily expository work in structure-based / embedding free graph
learning. TO the extent of the knowledge of the authors, it is the first relational learning
model to directly and natively enable cross-KG transfer learning. These properties leave
us with several future directions, which we enumerate below.

First, we highlight a need to refine (and ablate) the structural features used for learn-
ing in TWIG-I to determine which features drive performance and whether new features
could be of additional use in learning. We particularly highlight that moving beyond a
2-hop window to take into account a larger subgraph is an important direction, especially
for graphs such as WN18RR where the local neighbourhood around a triple tends to be
fairly homogeneous and inexpressive.

Second, we highlight that the existing co-frequency structural features (see Table 1
indicate the possibility to examine the performance of TWIG-I in terms of elements of
KG ontology, such as domain and range, that these statistics directly encode. This has the
interesting implication that TWIG-I maybe be able to model parts of ontologies directly
as a result of its structural modelling approach.

Finally, we highlight that further research into TWIG-I’s wide variance in perfor-
mance across KGs, in both the standard learning and the transfer learning settings, merits
continued research.

6. Conclusion

In this paper we present TWIG-I, a novel link prediction model that uses a fixed set
of structural features rather than node/edge embeddings to perform the link prediction
task. As a result of this shift in link prediction problem formulation, TWIG-I is the first
relational learning model known to the authors that natively enables transfer learning
across diverse KGs. TWIG-I’s performance is mixed in both the standard learning and
the transfer learning settings, but results indicate that it can approach (or even beat, in
some cases) the performance of KGE models. It must, however, be mentioned that it
under-performs relative to KGE models on the standard KGE benchmarks FB15k-237
and WN18RR.

As TWIG-I is based on graph structure alone, we hypothesise that further work
in graph-structure-first learning models is merited to assess the ability of TWIG-I-like
models to generalise and transfer knowledge across KGs from diverse domains.
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