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Abstract.

The increasing demand for automatic high-level image understanding, including
the detection of abstract concepts (AC) in images, presents a complex challenge
both technically and ethically. This demand highlights the need for innovative and
more interpretable approaches, that reconcile traditional deep vision methods with
the situated, nuanced knowledge that humans use to interpret images at such high
semantic levels. To bridge the gap between the deep vision and situated percep-
tual paradigms, this study aims to leverage situated perceptual knowledge of cul-
tural images to enhance performance and interpretability in AC image classifica-
tion. We automatically extract perceptual semantic units from images, which we
then model and integrate into the ARTstract Knowledge Graph (AKG). This re-
source captures situated perceptual semantics gleaned from over 14,000 cultural
images labeled with ACs. Additionally, we enhance the AKG with high-level lin-
guistic frames. To facilitate downstream tasks such as AC-based image classifica-
tion, we compute Knowledge Graph Embeddings (KGE). We experiment with rel-
ative representations [1] and hybrid approaches that fuse these embeddings with
visual transformer embeddings. Finally, for interpretability, we conduct posthoc
qualitative analyses by examining model similarities with training instances. The
adoption of the relative representation method significantly bolsters KGE-based
AC image classification, while our hybrid methods outperform state-of-the-art ap-
proaches. The posthoc interpretability analyses reveal the visual transformer’s pro-
ficiency in capturing pixel-level visual attributes, contrasting with our method’s
efficacy in representing more abstract and semantic scene elements. Our results
demonstrate the synergy and complementarity between KGE embeddings’ situ-
ated perceptual knowledge and deep visual model’s sensory-perceptual understand-
ing for AC image classification. This work suggests a strong potential of neuro-
symbolic methods for knowledge integration and robust image representation for
use in downstream intricate visual comprehension tasks. All the materials and code
are available at https://github.com/delfimpandiani/Stitching-Gaps
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1. Introduction

In the rapidly evolving field of Computer Vision (CV), the enduring challenge is to equip
machines with human-like cognitive abilities, surpassing data-driven pattern recognition
to bridge the gap between bottom-up signal processing and top-down knowledge retrieval
and reasoning [2]. This goal is rooted in the understanding that “humans are not mere
appearance-based classifiers; we acquire knowledge from experience and language” [3].
While explicit knowledge has historically been recognized as a way to improve auto-
matic image understanding, modern data-driven techniques are rooted in the deep learn-
ing (DL) paradigm and aim to acquire the majority of this knowledge from the training
data itself.

Meanwhile, CV endeavors to address increasingly complex tasks have been pro-
posed, including discerning abstract concepts like personality traits, political affiliations,
and beauty from visual cues [4,5,6,7]. However, the limitations of the deep learning
paradigm become evident in these tasks of abstract concept-based (AC) image classifi-
cation, where performance remains notably low [8]. Cognitive science suggests that ACs
differ from concrete concepts in that they serve as specifiers of relations between entities,
relying more on semantic and associative relations rather than categorical distinctions
[9,10]. Detecting ACs, therefore, often requires integrating and inferring over perceptual
information [11,12]. Indeed, abstract and cognitively complex tasks benefit from an ex-
plicit understanding of perceptual semantics, such as objects and colors [13], as well as
symbolic representations like common-sense associations [14] and high-level linguistic
frames [15].

AC image classification emphasizes the need to complement CV models with the
capacity to comprehend the relationships within a scene [16,17]. Innovative approaches
are needed to bridge the deep learning paradigm with explicit knowledge for complex
image interpretation. Key to this endeavor is the integration of resources where semantics
is represented explicitly, which plays a crucial role in enhancing interpretability [18].
This integration can be realized by combining knowledge-driven methods with data-
driven methods [19]. Promising results have been achieved by leveraging Knowledge
Graphs (KGs) to integrate background knowledge in CV models [20,21].

Based on these insights, we introduce the “situated perceptual knowledge” paradigm
to abstract concept-based (AC) image classification. This paradigm is centered on the
development of a KG integrating automatically detected perceptual semantics of images,
commonsense knowledge, and ACs via the SituAnnotate [22] ontology. We inject KG
embeddings (KGE), computed on the situated KG, with image representations obtained
from visual transformers through varying fusion techniques, including absolute and rel-
ative representations [1]. We also conduct qualitative analyses to understand the mod-
els’ abilities to capture symbolic and embodied aspects of image content by analyzing
relevant similarities with training instances.

This work is structured as follows: In Section 2, we review related work. Section 3
outlines our method to construct and embed the situated perceptual ARTstract Knowl-
edge Graph (AKG), while Section 4 presents AC image classification experiments using
the embeddings. Section 5 presents our results, and in Section 6, we discuss and per-
form post-hoc interpretation of the AC image classification results, as well as propose
potential future directions. We conclude in Section 7 with a summary of our findings and
contributions.
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2. Background

High-level Image Understanding The field of CV aims to understand images as data
[23,24] and interprets scene content at various levels [25], seeking high-level interpreta-
tion from visual data [26,27]. Recent advancements focus on automating recognition of
abstract and high-level meanings in images, including situational analysis [28,29,30,31],
event recognition [32], and visual persuasion and intent analysis [5,33,34,35], vi-
sual sentiment analysis [32,36,37], aesthetic analysis [38,6], social signal processing
[39,40,41,42], and visual rhetorical analysis [43,44,45].

Injecting Background Knowledge in CV models Knowledge and reasoning have been
used in CV tasks for decades now. Methods based on First Order Logic [46,47] and De-
scription Logic [48] have been proposed to perform AC classification and recognition.
Despite their promising results, such methods suffer from the lack of flexibility in the
data representation. Images are difficult to encode in a structured form. To overcome this
issue, different approaches have been proposed to exploit structured knowledge within
neural networks, which are far more flexible and can work directly on the raw image.
Most works focus on injecting knowledge from large structured resources, such as Visual
Genome [49] and ConceptNet [50]. Such approach enables the creation of multi-modal
architectures that are able to learn image representations that are informed by the struc-
tured resource [51]. Indeed, successful results have been obtained in various CV tasks,
including image classification [52], to visual scene recognition [14], image captioning
[53], image understanding [54] and scene generation [55]. Combining different represen-
tations (including KG) altogether is an active research field [56]. Approaches that inte-
grate the knowledge representation within the model architecture [52,53] or exploit it to
learn better features [55] have been proposed. Those methods, however, require an exten-
sive training data set. Recently, with the advent of large pre-trained models, techniques
to merge different approaches have been proposed. This includes techniques that unify
latent spaces trained on different modalities [57,1] as well as techniques that integrate
different representations [58].

Cognitive Insights into AC Representation Cognitive theories of AC representation ex-
plore two paths: distributional models, which infer meaning from word co-occurrence
statistics [59], and embodied cognition, which grounds meaning in sensory, percep-
tual, and motor interactions, emphasizing context [60,61]. The “multiple representations
view” reconciles these perspectives, integrating distributional and embodied information
as mutually influential [62]. For ACs, this involves sensorimotor systems, linguistic data,
emotional experiences, and social interactions [63]. Cognitive substrates of ACs, such
as acquired embodiment, relationality, and emotionality, highlight their complex repre-
sentation in the brain [62]. Acquired embodiment connects abstract words to sensory-
motor (S-M) information through associations with concrete words, involving context-
dependent activation of S-M features [64]. Relationality suggests ACs specify multiple
semantic relations between entities, relying on semantic and associative relations [65,10],
implying that detecting ACs may involve identifying relationships between objects in
scenes [17]. Emotionality emphasizes that abstract words generally have higher emo-
tional associations than concrete words, supported by imaging studies showing greater
activation in emotion-related brain areas during AC processing [66,67]. This integrated
approach reflects ACs’ grounding in both linguistic and perceptual experiences [68].
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3. Method

3.1. Task Definition and Data Selection

In light of recent studies on AC image classification [8], we adopt a single-label multi-
class classification approach for our task. This decision was made to prioritize identi-
fying the most prominent AC category associated with each image, rather than using
a multi-label multi-class approach. This approach simplifies the complexities in visual
representations of ACs, where images may not strictly belong to a single category, and
ACs may overlap. By focusing on a single-label approach, we aim to capture the pri-
mary association between an image and its most salient AC. Each image Ii in our dataset
X = [I1, I2, . . . , Im] is paired with a ground truth label yi drawn from a set of K poten-
tial AC categories. Our objective is to determine the optimal image representation Ii and
model parameters θ that maximize the conditional probability p(yi | Ii,θ). This formula-
tion assumes ACs as mutually exclusive for classification purposes, despite their poten-
tial overlap within real-world visual scenes. We aim to enhance AC image classification
by automatically integrating situated perceptual knowledge into image representations.
This involves three steps: extracting perceptual semantic (PS) features from images (Sec-
tion 3.2), integrating them with contextual knowledge into the ARTstract Knowledge
Graph (Section 3.3), and embedding the AKG for novel image representations suited for
AC classification (Section 3.4).

We experiment on the ARTstract dataset, consisting of 14,795 cultural images la-
beled with abstract concepts (ACs) [8], amalgamates data from ArtPedia [69], ARTemis
[37], the Ads Dataset [45], and the Tate Collection metadata. This curated collection
includes seven defined AC labels: comfort, danger, death, fitness, freedom, power, and
safety.The dataset’s images were selected by querying the original datasets for images
tagged with the words associated with each of the AC clusters [8]. Importantly, the
dataset utilizes evoked clusters initially identified in the Ads Dataset, where these clusters
originated from analyzing AC co-occurrences in advertising images. These clusters of-
ten reflect symbols and themes primarily observed in Western and Euro-centric contexts
[45], potentially introducing biases rooted in specific cultural perspectives.

3.2. Perceptual Semantic Units Extraction

Cognitive neuroscience research highlights that ACs in the human brain are linked to
concrete items, activating sensory-motor features associated with objects, actions, and
colors [64]. Additionally, emotions play a significant role in AC modeling and percep-
tion [70,71], suggesting that ACs are grounded in tangible experiences and sensory per-
ceptions. Building on this insight, we extract perceptual semantics (PS) as cognitive-
based intermediary semantic units for image representation. These include actions, age,
art style, dominant colors, evoked emotions, human presence, depicted objects, and an
automatically generated image caption. Table 1 provides an overview of the selected ex-
tractors, including their architectural backbones, the datasets on which they are trained,
and a description of their task. They have been selected through manual investigation,
focusing on easily available, off-the-shelf models trained or fine-tuned for relevant se-
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mantic units and prioritizing popularity and ratings.2 For each extractor, we manually
align the output labels to the respective nodes in ConceptNet [72] (except for the textual
caption). By leveraging those detectors, we reflect the interpretative capabilities of CV
tools across various semantic levels, facilitating automated processing for new or unseen
images without requiring human-annotated ground truths.

Table 1. Perceptual Semantic (PS) units and their associated artificial annotators, their model backbones,
pretraining datasets, and other details.

PS Unit Backbone Dataset Description

Action ViT HAR dataset [73] Computes the probabilities for detected ac-
tions in an image such as running, eating,
and sleeping.

Age Tier ViT Fair Face [74] Categorizes individuals into age groups
ranging from 0-2 to 70+.

Art Style ViT ArtBench-10 [75] Detects artistic styles such as Art Nouveau,
Baroque, and Expressionism.

Top Colors ColorThief N/A Detects up to 5 dominant colors in an im-
age. We convert each RGB color to the
CSS3 web color with the closest Euclidean
distance. If a distance ≥ 50 is detected, the
color is discarded.

Emotion Artemis [37] Artemis [37] Detects the prominent emotion in an im-
age from nine emotion categories such as
amusement, awe, and contentment.

Human Presence ViT Deep Fashion v1 [76] Detects whether a human presence is in an
image.

Image Caption BLIP [77] COCO [78] Generate a textual description of an image.
Detected Objects DETR [79] COCO [78] Detects the objects in an image. Only ob-

jects whose probability is ≥ 0.4 are re-
tained.

3.3. ARTstract Knowledge Graph Creation

We use the SituAnnotate ontology [22], which models the situated assignment of an-
notation labels to information objects, and includes a module tailored for image an-
notation situations. To reify the PS labels, we represent each as an instance of the
Annotation class and connect it to its AnnotationSituation, associated Image, uti-
lized LexicalEntry, assigned AnnotationStrength, label AnnotationRole, and the
ConceptNet concept that provided its typification (see Figure 1). To formally represent
the annotation contexts, each entry row in Table 1 is reified as an instance of a subclass of
ImageAnnotationSituation. The resulting triples contain detailed information about
these annotation situations, including geographical locations, timestamps, annotators,
specific model architectures, datasets, and more. To further enhance the KG, following

2The models utilized for each detection are as follows: Action detection: https://huggingface.co/DunnBC22/

vit-base-patch16-224-in21k_Human_Activity_Recognition; Age Tier: https://huggingface.co/nateraw/

vit-age-classifier; Art Style: https://huggingface.co/oschamp/vit-artworkclassifier); Top Colors: https:

//github.com/lokesh/color-thief; Emotion detection: https://github.com/optas/artemis/blob/master/artemis/neural_

models/image_emotion_clf.py; Human Presence: https://huggingface.co/adhamelarabawy/human_presence_classifier;
Image Captioning: https://huggingface.co/Salesforce/blip-image-captioning-largemodel; Object Detection: https:

//huggingface.co/Salesforce/facebook/detr-resnet-50.
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Figure 1. Subset of the A-Box of ARTstract-KG, showing the types of commonsense linguistic knowledge
connected to a single image instance. Most annotations are typed by ConceptNet concepts, while the image
captions are typed by WordNet concepts as well as by linguistic frames.

[15] we extract WordNet synsets from the captions using FRED [80], and employ these
as triggers for the extraction of high-level linguistic frames. The KG was built using RD-
Flib, which facilitated the mapping of PS from a JSON file to the SituAnnotate ontol-
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ogy, which was accessed directly via its permanent IRI3. Additionally, we employed the
Framester [80] schema to reference ConceptNet and WordNet IRIs.

3.4. ARTstract Knowledge Graph Embedding

In order to exploit the information encoded in the situated AKG, we compute the KGE
of AKG by relying on TransE [81]. KGEs transform KG components into continuous
vector spaces, so as to simplify the manipulation while preserving the inherent structure
of the KG [82]. The representation of a node associated with each image encodes all
the selected PS features of an image without taking into account the raw features of
the image. Since each PS is aligned to ConceptNet, the representation of two images
that share the same PS feature will be similar. Before computing the embeddings, we
preprocess the AKG to prevent data leakage: we remove all rows containing AC cluster
names in subjects or objects. This filtering maintains the KGEs’ separation from the
target AC clusters, preserving integrity for the downstream task.

4. Experiments

4.1. Encoding Phase

In the encoding phase, we explore three primary approaches to represent image data: (i)
rely only on the image representation produced by the KGE method (IKGE); (ii) rely only
on features extracted by a deep CV model (ICV); (iii) combine both the KGE and CV
model representations (IH). When relying solely on the KGE method, we use the AKG
embeddings generated with TransE. In the case of using only the CV model (ICV), we
evaluate three architectures: VGG [83], ResNet [84] and ViT [85]. VGG and ResNet are
Convolutional Neural Networks, while ViT is based on the transformer architecture. In
the combined approach (IH), we concatenate the KGE embedding with the most effective
CV model representation, which in our case is ViT.

While concatenation has demonstrated effectiveness [58], it merges vectors from
disparate latent spaces without considering their structural differences. To address this
limitation, we adopt the relative representation approach [1]. This method constructs
representations where each sample is defined in relation to a subset A of the training data
X , which is selected as anchor samples. Each training sample is represented with respect
to the embedded anchors ea( j) = E(a( j)) with a( j) ∈ A via a generic similarity function
sim : Rd ×R

d → R. This yields a scalar score r between two absolute representations
r = sim(ex(i) ,ex( j) ). Thus, the relative representation of x(i) ∈ X is defined as:

rx(i) = (sim(ex(i) ,ea(1) ),sim(ex(i) ,ea(2) ), . . . ,sim(ex(i) ,ea(|A|) )) (1)

We adopt this approach to construct the relative representations of both the KGE em-
bedding and the most effective CV model representation, ViT. Each embedding in the
training distribution is represented in relation to a set of embedded anchor vectors. We
randomly select 700 anchors from the training set, with 100 corresponding to each tar-

3
https://w3id.org/situannotate
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get AC class. For each image, we transform the two vector representations, IKGE and
IViT, into their relative versions, IR-KGE and IR-ViT respectively. Subsequently, we apply
hybrid methods to combine the relative embeddings using either concatenation (||) or
the Hadamard product (element-wise multiplication, �). Notably, when using relative
representations, the vectors maintain consistent dimensionality, eliminating the need for
extension through padding.

4.2. Classification Phase

During the classification phase, the output from each encoding approach is inputted into
a classifier. We utilized a Multi-Layer Perceptron (MLP) model for final classification,
consisting of two linear layers sequentially activated by Rectified Linear Units (ReLU),
with a dropout layer (dropout rate of 0.3) for regularization. Training utilized Cross-
Entropy Loss with a fixed learning rate (lr = 0.001) and 50 epochs per architecture. The
MLP outputs the probability of an image belonging to one of the 7 labels in the ARTstract
dataset. Data processing efficiency was optimized through multi-threading employing 16
workers. All experiments were conducted on an RTX3080 with 24GB of RAM.

5. Results

5.1. AC Image Classification Performances

Table 2. Comparison of KGE-based models with state-of-the-art DL computer vision models in terms of
Macro F1 Score. The top-performing model is highlighted in both bold and italics. The second-best performing
models are denoted in bold. SPK: Situated Perceptual Knowledge, DL: Deep Learning.

Input Embedding Macro F1 Paradigm

Absolute KGE 0.22 SPK
Absolute VGG-16 0.23 DL
Absolute ResNet-50 0.24 DL
Absolute ViT 0.30 DL
Absolute KGE || Absolute ViT 0.31 Hybrid

Relative KGE 0.27 SPK
Relative ViT 0.28 DL
Relative KGE � Relative ViT 0.29 Hybrid
Relative KGE || Relative ViT 0.33 Hybrid

In Table 2, we present the performance metric, specifically the Macro F1 score, of
our approaches compared to the state of the art. Among these models, ResNet-50 and
VGG-16 achieved Macro F1 scores of 0.24 and 0.23, respectively, while ViT achieved
a score of 0.30. Despite lacking access to pixel-level features, our KGE-only model
demonstrated competitive results compared to the CNNs, scoring 0.22. Impressively, the
Relative KGE version outperformed both CNN methods with a score of 0.27.
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Figure 2. Macro F1 scores on the AC image classification tasks for different input embeddings.

Absolute versus Relative Embeddings RelKGE outperformed absKGE, achieving a
higher Macro F1 score of 0.27 compared to 0.22 (see Figure 2). This suggests that using
relative representation significantly improves KGE’s performance in AC image classifi-
cation. For ViT embeddings, absViT scored 0.3 in Macro F1, slightly higher than relViT
at 0.28. These findings reveal a nuanced difference, indicating relative embeddings may
slightly degrade ViT performance.

Hybrid Embeddings Our hybrid approaches exhibited the best overall performance (as
depicted in Figure 2), surpassing other methods in our study as well as the existing state
of the art. Notably, the Relative KGE || Relative ViT approach, which combines the two
relative embeddings, achieved the highest F1 score of 0.33, representing a new bench-
mark for this task. Additionally, the concatenation of Absolute KGE and Absolute ViT
embeddings attained a score of 0.31, further illustrating the effectiveness of hybrid meth-
ods. Lastly, the Hadamard product of the two relative embeddings scored slightly lower
than Absolute ViT (0.29 versus 0.30), but it remains comparable and offers enhanced
interpretability, making it a valuable option for analysis.

6. Discussion

6.1. The ARTstact-KG

The ARTstact-KG is a comprehensive resource containing over 1.9 million triples de-
rived from the ARTstract dataset, encompassing situated annotation data from more than
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14,000 unique images. It provides detailed information about perceptual semantics, fa-
cilitated by the reification of annotation situations and semantic labels. Annotation sit-
uations capture various details such as geographical locations, timestamps, annotators,
model architectures, and datasets. Similarly, semantic labels assigned to images are rei-
fied as instances of the Annotation class, forming connections between annotations,
annotation situations, images, lexical entries, annotation strengths, annotation roles, and
ConceptNet concepts, while linguistic frames extracted from image captions further en-
hance its expressiveness, offering a comprehensive linguistic context for each image.

6.2. AC Image Classification

Our results show the effectiveness of various embedding approaches in enhancing AC
image classification performance. In our study, we implemented the relative representa-
tion method [1], encoding each instance relative to selected anchor points. Our results
suggest that the relative representation method improves KGE-based models by pro-
viding more meaningful cluster-level semantic information, enhancing semantic resolu-
tion. Conversely, Absolute ViT outperformed Relative ViT, indicating that ViT may not
benefit from the semantic bias introduced by relative representation, potentially losing
fine-grained local differences and spatial resolution critical for pixel-level models like
ViT. These findings underscore the relative representation method’s potential to boost
KGE-based image classification, offering a valuable alternative to ViT. Additionally, our
hybrid embedding approaches, particularly the combination of Relative KGE and Rela-
tive ViT embeddings, showcase the highest F1 score attained in this task, setting a new
benchmark for AC image classification. The competitive performance of hybrid methods
underscores the effectiveness of integrating different types of embeddings to leverage
their respective strengths.

6.3. Post-Hoc Interpretability

6.3.1. Perceptual Disparities: ViT vs. KGE

To better understand the results, we conducted a post-hoc analysis on randomly selected
test images, for which we retrieved the top 5 most similar training images using both
ViT and KGE embeddings, and compared them. In Figure 3, we illustrate two examples.
In the first example, when using ViT embeddings, 4 out of 5 of the top similar images
correctly share the ground truth label, freedom. These images prominently feature the
United States flag, indicating that ViT’s encoding accentuates features reminiscent of
the flag’s presence. This observation suggests potential geographical and cultural bias in
ViT’s training data. Contrastingly, all top similar images based on Absolute KGE em-
beddings share the ground truth comfort. These images exhibit a strong visual and se-
mantic connection with the lower portion of the test image, including elements such as
grass, fields, trees, and greens. This suggests that KGE embeddings may be biased to-
wards parts of images associated with comfort, a bias possibly inherited from the dataset
itself. In the second example, none of the top images based on ViT share the correct
ground truth freedom, nor do they share evident perceptual semantics. Conversely, the
top similar images based on KGE not only share the correct ground truth label but also
prominently feature the Statue of Liberty. In this instance, KGE successfully associates
the test image with semantically relevant training instances, whereas ViT fails to encode
similarity for coherent results.

D.S. Martinez Pandiani et al. / Stitching Gaps 77



Figure 3. Absolute ViT vs. Absolute KGE embeddings capture different aspects of ARTstract images. Top:
Absolute ViT captures aspects that resemble the United States flag while KGE captures more landscape-related
features, Bottom: Absolute KGE demonstrates superior semantic performance than ViT by encoding similari-
ties with perceptually diverse visions of the Statue of Liberty

6.3.2. High-Level Semantic Proficiency of KGE

Further examples reveal that, even when both embeddings make correct predictions, they
exhibit distinct understandings of images. Notably, KGE embeddings appear to encap-
sulate more “high-level” semantic features compared to ViT embeddings. For instance,
in Figure 4, the images identified as most similar by ViT to the test image predominantly
share visual characteristics reminiscent of the image’s “aesthetics” or “style,” emphasiz-
ing elements like colors, shapes, and artistic composition. However, while some of these
images share the correct ground truth label comfort, others are labeled power. In contrast,
the most similar instances identified by KGE embeddings all share the correct ground
truth label comfort, consistently conveying the same higher-level semantics–in this case,
the depiction of a comfortable situation with a woman reading. KGE achieves this by
aligning the top 5 similar images with depictions of women reading, whereas ViT fails to
correlate the test image with any training images portraying the same scene semantics.

Multiple test instances suggest that the KGE method exhibits superior performance
over ViT in capturing higher-level semantics, as illustrated in Figure 5, a test image por-
traying two individuals in an intimate scenario serves as an exemplary case. While ViT-
similar images primarily focus on pixel-level resemblances, such as dark colors and tex-
tures, KGE emphasizes the higher level “situation” of individuals engaged in an intimate
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Figure 4. Contrasting semantic proficiency of Absolute KGE vs. Absolute ViT. The top image illustrates ViT’s
focus on colors and textures (aesthetics), whereas KGE excels in recognizing explicit semantics, particularly
women sitting on couches. In the bottom image, KGE effectively encodes the semantics of reading a book in
the test artwork.

Figure 5. ViT misclassifies as death, but KGE successfully associates images with crosses to the concept of
comfort, indicating ViT’s focus on colors and textures.

interaction. Notably, the majority of KGE-generated similar images depict scenes with
two or more people in intimate settings, contrasting with the single individuals predomi-
nantly shown in ViT-similar images. While ViT may excel in recognizing detailed visual
elements, these results suggest the KGE method’s potential applicability in tasks requir-
ing the interpretation of social interactions, relationships, or other complex high-level
visual cues. A final but compelling example of this trend is seen in Figure 6, in which
the KGE method is able to identify a “trigger” of a high-level semantic concept. The
test image, categorized under the label death, depicts a convoy resembling ambulances,
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Figure 6. ViT misclassifies as comfort, but KGE successfully associates images with crosses to the concept of
death.

reminiscent of those found in war zones. While ViT retrieves images primarily tagged
with comfort, likely due to the original image’s warm colors, landscape composition and
drawing/cartoon-like drawing features, the top similar images as based on vit feature
outdoor scenes irrelevant to the ground truth of death. In contrast, the top three similar
images based on KGE embeddings share the correct label of death, evoked through the
presence of crosses and crucifixion imagery. This indicates that the KGE model success-
fully associates images featuring crosses with the concept of death, prioritizing this con-
nection over visual elements associated with comfort (the ViT misclassification). A final
but compelling example highlighting this disparity is showcased in Figure 6, where the
KGE method discerns the pivotal perceptual semantic unit that acts as a“trigger” for the
high-level abstract concept. The test image, categorized under the label death, portrays a
convoy resembling ambulances, reminiscent of those found in war zones. ViT retrieves
images primarily tagged with comfort, likely due to the test image’s warm colors, land-
scape composition, and cartoon-like drawing lines; the top similar images based on ViT
feature outdoor scenes irrelevant to the ground truth of death. Conversely, the top three
similar images based on KGE embeddings accurately share the death ground truth, and
all share the depiction of crosses and crucifixion imagery. This signifies the KGE model’s
adeptness at associating images featuring crosses with the concept of death, prioritizing
this connection over visual elements associated with other ACs like comfort.

The proficiency demonstrated by KGE embeddings is particularly remarkable con-
sidering the automated pipeline employed in constructing the ARTstract-KG. All percep-
tual semantic units were annotated using artificial annotators (models), indicating that
they represent non-human evaluated perceptual semantics without human or manual se-
mantic coherence checks. Consequently, this pipeline introduces inherent noise, com-
pounded by the complexities of cultural art images, which often lack discrete objects
and other detectable categories. Despite this noise, our qualitative analyses underscore
the capacity of KGE embeddings to implicitly encode essential high-level semantics, a
crucial aspect of our study. We believe that this discrepancy may primarily arise from
the prototype selection process, wherein images are represented based on their similarity
to these prototypes. Essentially, ViT’s latent space heavily relies on the noise accumu-
lated from its extensive training dataset. However, transforming this deep representation
into a relative form introduces a strong prior assumption, expecting images that evoke
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the same AC to exhibit semantic similarity. This transformation does not perfectly align
with ViT’s latent space; instead, it confines the representation to specific regions within
that space. This constraint potentially limits ViT’s ability to express semantic relation-
ships, as it can no longer rely solely on pixel-wise perceptual features but must effec-
tively position images within its latent space. Consequently, the images obtained in this
process may appear perplexing because the model’s internal representation significantly
differs from human perception. It primarily depends on subtle pixel differences, which,
while effective for simple cognitive tasks, fall short in generalizing to the human internal
understanding of the world.

6.3.3. Hybridity and Complementarity

One critical finding was that hybrid embeddings yielded the highest classification per-
formance, with fusing two relative embeddings resulting in more significant improve-
ments than fusing two absolute embeddings. This underscores the complementary na-
ture of deep vision and situated perceptual paradigms. Post-hoc interpretability analyses
support this result. For instance, Figure 7 illustrates the top 5 most similar anchor im-
ages using relative ViT embeddings (top row), relative KGE embeddings (middle rows),
and hybrid (Hadamard product) embeddings. Each row includes the top ARTstract-KG
nodes shared by the images, extracted via a SPARQL query on the knowledge graph. In
this example, both relative ViT and relative KGE embeddings independently encode high
similarity with anchor images related to the correct ground truth, fitness, and they over-
lap in selecting certain anchor images. However, each also includes images that do not
belong to the correct class in their top selections. Remarkably, the hybrid embedding’s
top 5 anchors combine correct images from both unimodal embeddings, resulting in all
images sharing the correct ground truth fitness. Moreover, nodes highly shared in either
single embeddings are prevalent in the hybrid, indicating a complementary integration
of information between them.

Figure 7. Interpretability results for a test image labeled as fitness. Top similar anchors are shown for the test
instance using relative ViT embeddings (top row), relative KGE embeddings (middle rows), and hybrid em-
beddings. Shared ARTstract-KG nodes accompany each row. The hybrid embedding integrates complementary
information from both relative embeddings to prioritize anchors tagged as fitness.

These findings highlight the potential of utilizing the Hadamard product (A ◦ B)
specifically on relative representations, which emphasizes anchors showing high simi-
larity to a given image from both spatial and semantic perspectives. Through Hadamard
multiplication, we assess the agreement between ViT and KGE regarding an image’s sim-
ilarity to prototypes, likely maintaining KGE’s semantics while re-ranking images based
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on perceptual features detected by ViT. This operation aids in identifying anchor images
with pronounced similarities to the image of interest across both embedding spaces, fa-
cilitating the recognition of anchors with dual-mode significance and unique character-
istics captured by each modality. The results in Figure 7 underscore the proficiency of
the hybrid embedding in recognizing spatially-semantically similar anchors, attributed
to the complementary nature of relative ViT and relative KGE embeddings. By combin-
ing them, we capture information sometimes missed when using them individually, of-
fering significant benefits, particularly in situations where both pixel-level and semantic
understanding are essential. The hybrid approach shows promise for various applications
where understanding the underlying factors contributing to image similarity is critical.

6.4. Limitations and Future Directions

Refining task definitions and evaluation metrics for AC image classification is crucial
for future research. The current single-label multi-class approach may not fully capture
nuanced relationships between images and ACs, where multiple ACs can co-exist [8].
Alternative ranking-based tasks assess relative AC relevance [5], offering a broader per-
spective. Future metrics should prioritize reasonability over strict objectivity, considering
semantic AC relationships [37,86] to align with human perception. While our method
ensures balanced class sampling in training, impacts of imbalance on test performance
are unclear. Future evaluations should integrate class support metrics and macro averages
for comprehensive model assessment. Variability in AC visual representation introduces
technical complexities and ethical concerns. Bias frameworks in CV address labels on
human images [87,88,89,90], shaped by social and cultural contexts [91,92], impacting
diverse communities [93], perpetuating AI biases and racism. Improved dataset curation
and transparency are essential for equitable AI.

7. Conclusion

This study introduces the ARTstract Knowledge Graph (AKG) and its pivotal role in ad-
vancing interpretability and performance in AC image classification. AKG is a founda-
tional resource that captures perceptual semantics from over 14,000 cultural images la-
beled with abstract concepts (ACs), enhancing contextual understanding in visual analy-
sis. By reifying perceptual semantics, encoding annotation context, and integrating with
ConceptNet [94] and Framester [80], AKG provides a robust framework for interpretable
reasoning in image analysis. The study demonstrates the effectiveness of Knowledge
Graph Embeddings (KGE), both absolute and relative, in enhancing AC image classi-
fication performance and interpretability. Relative representation significantly strength-
ens KGE-based models, with hybrid KGE-ViT embeddings emerging as top performers,
surpassing state-of-the-art approaches in AC image classification. Post-hoc interpretabil-
ity analyses illuminate model strengths: ViT excels in capturing detailed pixel-level fea-
tures, while KGE demonstrates proficiency in interpreting scenes and high-level seman-
tics. The relative approach, by constraining ViT’s latent space, raises crucial consider-
ations for interpretability and semantic understanding. These findings provoke critical
questions about how models learn representations and their implications for interpreting
images. Future research includes exploring hybrid approaches for complex visual tasks.
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[10] Duñabeitia JA, Avilés A, Afonso O, Scheepers C, Carreiras M. Qualitative differences in the rep-
resentation of abstract versus concrete words: Evidence from the visual-world paradigm. Cognition.
2009;110(2):284-92.

[11] Bruner J. Culture and human development: A new look. Human development. 1990;33(6):344-55.
[12] Firestone C, Scholl BJ. Cognition does not affect perception: Evaluating the evidence for “top-down”

effects. Behavioral and brain sciences. 2016;39.
[13] Martinez Pandiani DS, Presutti V. Automatic Modeling of Social Concepts Evoked by Art Images as

Multimodal Frames. In: Proceedings of the Workshops and Tutorials held at LDK 2021 co-located with
the 3rd Language, Data and Knowledge Conference (LDK 2021). Zaragoza, Spain; 2021. p. arXiv-2110.

[14] Kalanat N, Kovashka A. Symbolic image detection using scene and knowledge graphs. arXiv preprint
arXiv:220604863. 2022.

[15] Ciroku F, De Giorgis S, Gangemi A, Martinez Pandiani DS, Presutti V. Automated multimodal sense-
making: Ontology-based integration of linguistic frames and visual data. Computers in Human Behav-
ior. 2024;150:107997.

[16] Isola P, Lim JJ, Adelson EH. Discovering states and transformations in image collections. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1383-91.

[17] Sadeghi MA, Farhadi A. Recognition using visual phrases. In: Cvpr 2011. Ieee; 2011. p. 1745-52.
[18] Chen X, Li LJ, Fei-Fei L, Gupta A. Iterative visual reasoning beyond convolutions. In: Proc. of CVPR

2018. IEEE; 2018. p. 7239-48.
[19] van Bekkum M, de Boer M, van Harmelen F, Meyer-Vitali A, Teije At. Modular Design Patterns for

Hybrid Learning and Reasoning Systems: a taxonomy, patterns and use cases. arXiv:210211965 [cs].
2021 Mar;51(9):6528-46.

[20] Aditya S, Yang Y, Baral C. Integrating knowledge and reasoning in image understanding. In: 28th
International Joint Conference on Artificial Intelligence, IJCAI 2019. International Joint Conferences
on Artificial Intelligence; 2019. p. 6252-9.

[21] Tiddi I, Schlobach S. Knowledge graphs as tools for explainable machine learning: A survey. Artificial
Intelligence. 2022;302:103627.

[22] Martinez Pandiani DS, Presutti V. Situated Ground Truths: Enhancing Bias-Aware AI by Situating Data
Labels with SituAnnotate. [Under Review] Special Issue on Trustworthy Artificial Intelligence of ACM
Transactions on Knowledge Discovery from Data (TKDD). 2024.

[23] Hoiem D, Efros AA, Hebert M. Putting objects in perspective. International Journal of Computer Vision.
2008;80:3-15.

D.S. Martinez Pandiani et al. / Stitching Gaps 83



[24] Arnold T, Tilton L. Distant Viewing Toolkit: A Python Package for the Analysis of Visual Culture.
Journal of Open Source Software. 2020 Jan;5(45):1800.

[25] Szeliski R. Computer vision: algorithms and applications. Springer Nature; 2022.
[26] Borji A. Negative results in computer vision: A perspective. Image and Vision Computing. 2018;69:1-8.
[27] Hussain Z, Zhang M, Zhang X, Ye K, Thomas C, et al. Automatic understanding of image and video

advertisements. In: Proceedings of the IEEE conference on computer vision and pattern recognition;
2017. p. 1705-15.

[28] Yatskar M, Zettlemoyer L, Farhadi A. Situation Recognition: Visual Semantic Role Labeling for Image
Understanding. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las
Vegas, NV, USA: IEEE; 2016. p. 5534-42.

[29] Suhail M, Sigal L. Mixture-Kernel Graph Attention Network for Situation Recognition. In: 2019
IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South): IEEE; 2019.
p. 10362-71.

[30] Pratt S, Yatskar M, Weihs L, Farhadi A, Kembhavi A. Grounded Situation Recognition. In: Vedaldi
A, Bischof H, Brox T, Frahm JM, editors. Computer Vision – ECCV 2020. Lecture Notes in Computer
Science. Springer. Cham: Springer International Publishing; 2020. p. 314-32.

[31] Li R, Tapaswi M, Liao R, Jia J, Urtasun R, et al. Situation Recognition with Graph Neural Networks.
In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE; 2017. p. 4183-92.

[32] Yao X, She D, Zhao S, Liang J, Lai YK, et al. Attention-Aware Polarity Sensitive Embedding for
Affective Image Retrieval. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV).
Seoul, Korea (South): IEEE; 2019. p. 1140-50.

[33] Jia M, Wu Z, Reiter A, Cardie C, Belongie S, et al. Intentonomy: a Dataset and Study towards Human
Intent Understanding. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Nashville, TN, USA: IEEE; 2021. p. 12981-91.

[34] Huang X, Kovashka A. Inferring Visual Persuasion via Body Language, Setting, and Deep Features. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops; 2016. p.
778-84.

[35] Guo M, Hwa R, Kovashka A. Detecting Persuasive Atypicality by Modeling Contextual Compatibility.
In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada:
IEEE; 2021. p. 952-62.

[36] Toisoul A, Kossaifi J, Bulat A, Tzimiropoulos G, Pantic M. Estimation of Continuous Valence and
Arousal Levels from Faces in Naturalistic Conditions. Nature Machine Intelligence. 2021 Jan;3(1):42-
50.

[37] Achlioptas P, Ovsjanikov M, Haydarov K, Elhoseiny M, Guibas LJ. ArtEmis: Affective Language for
Visual Art. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021. Computer Vision Foundation / IEEE; 2021. p. 11569-79.

[38] Workman S, Souvenir R, Jacobs N. Understanding and Mapping Natural Beauty. In: 2017 IEEE Inter-
national Conference on Computer Vision (ICCV). Venice: IEEE; 2017. p. 5590-9.

[39] Sun Q, Schiele B, Fritz M. A Domain Based Approach to Social Relation Recognition. In: 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE; 2017. p. 435-44.

[40] Li W, Duan Y, Lu J, Feng J, Zhou J. Graph-Based Social Relation Reasoning. In: Vedaldi A, Bischof
H, Brox T, Frahm JM, editors. Computer Vision – ECCV 2020. Lecture Notes in Computer Science.
Cham: Springer International Publishing; 2020. p. 18-34.

[41] Li J, Wong Y, Zhao Q, Kankanhalli MS. Dual-Glance Model for Deciphering Social Relationships. In:
2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE; 2017. p. 2669-78.

[42] Goel A, Ma KT, Tan C. An End-To-End Network for Generating Social Relationship Graphs. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA:
IEEE; 2019. p. 11178-87.

[43] Ye K, Nazari NH, Hahn J, Hussain Z, Zhang M, et al. Interpreting the Rhetoric of Visual Advertisements.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2019 Apr;43(4):1308-23.

[44] Ye K, Kovashka A. ADVISE: Symbolism and External Knowledge for Decoding Advertisements. In:
Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision – ECCV 2018. vol. 11219
LNCS. Cham: Springer International Publishing; 2018. p. 868-86.

[45] Hussain Z, Zhang M, Zhang X, Ye K, Thomas C, Agha Z, et al. Automatic Understanding of Image
and Video Advertisements. In: Proceedings of the IEEE conference on computer vision and pattern
recognition; 2017. p. 1705-15.

D.S. Martinez Pandiani et al. / Stitching Gaps84



[46] Zhu Y, Fathi A, Fei-Fei L. Reasoning about object affordances in a knowledge base representation. In:
European conference on computer vision. Springer; 2014. p. 408-24.

[47] London B, Khamis S, Bach S, Huang B, Getoor L, et al. Collective activity detection using hinge-
loss Markov random fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops; 2013. p. 566-71.

[48] Dasiopoulou S, Kompatsiaris I, Strintzis MG. Applying fuzzy DLs in the extraction of image semantics.
In: Journal on data semantics XIV. Springer; 2009. p. 105-32.

[49] Krishna R, Zhu Y, Groth O, Johnson J, Hata K, et al. Visual Genome: Connecting Language and Vision
Using Crowdsourced Dense Image Annotations. arXiv:160207332 [cs]. 2016 Feb;123(1):32-73.

[50] Havasi C, Speer R, Alonso J. ConceptNet 3: a flexible, multilingual semantic network for common
sense knowledge. In: Recent advances in natural language processing. John Benjamins Philadelphia,
PA; 2007. p. 27-9.

[51] Ektefaie Y, Dasoulas G, Noori A, Farhat M, Zitnik M. Multimodal learning with graphs. Nat Mac Intell.
2023;5(4):340-50.

[52] Novack Z, McAuley JJ, Lipton ZC, Garg S. CHiLS: Zero-Shot Image Classification with Hierarchical
Label Sets. In: Krause A, Brunskill E, Cho K, Engelhardt B, Sabato S, Scarlett J, editors. International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA. vol. 202 of
Proceedings of Machine Learning Research. PMLR; 2023. p. 26342-62.

[53] Li X, Lian D, Lu Z, Bai J, Chen Z, Wang X. GraphAdapter: Tuning Vision-Language Models With Dual
Knowledge Graph. CoRR. 2023;abs/2309.13625.

[54] Guo W, Wang J, Wang S. Deep multimodal representation learning: A survey. IEEE Access.
2019;7:63373-94.

[55] Buffelli D, Tsamoura E. Scalable Theory-Driven Regularization of Scene Graph Generation Models.
In: Williams B, Chen Y, Neville J, editors. Thirty-Seventh AAAI Conference on Artificial Intelligence,
AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023,
Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington,
DC, USA, February 7-14, 2023. AAAI Press; 2023. p. 6850-9.

[56] Jabeen S, Li X, Shoib AM, Omar B, Li S, Jabbar A. A Review on Methods and Applications in Multi-
modal Deep Learning. ACM Trans Multim Comput Commun Appl. 2023;19(2s):76:1-76:41.

[57] Norelli A, Fumero M, Maiorca V, Moschella L, Rodolà E, Locatello F. ASIF: Coupled Data Turns
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