
Evaluating Reification with Multi-Valued
Properties in a Knowledge Graph of

Licensed Educational Resources

Manoé KIEFFER a,1, Ginwa FAKIH a Patricia SERRANO ALVARADO a

a LS2N, UMR 6004, Nantes Université, 44300 Nantes, France

Abstract. This paper presents the construction of a Knowledge Graph (KG) of Edu-
cational Resources (ER), where RDF reification is essential. The ERs are described
based on the subjects they cover considering their relevance. RDF reification is
used to incorporate this subject’s relevance. Multiple reification models with dis-
tinct syntax and performance implications for storage and query processing exist.
This study aims to experimentally compare four statement-based reification mod-
els with four triplestores to determine the most pertinent choice for our KG. We
built four versions of the KG. Each version has a distinct reification model, namely
standard reification, singleton properties, named graphs, and RDF-star, which were
obtained using RML mappings. Each of the four triplestores (Virtuoso, Jena, Ox-
igraph, and GraphDB) was setup four times (except for Virtuoso, which does not
support RDF-star), and seven different SPARQL queries were experimentally eval-
uated. This study shows that standard reification and named graphs lead to good
performance. It also shows that, in the particular context of the used KG, Virtuoso
outperforms Jena, GraphDB, and Oxigraph in most queries. The recent specifica-
tion of RDF-star and SPARQL-star sheds light on statement-level annotations. The
empirical study reported in this paper contributes to the efforts towards the efficient
usage of RDF reification. In addition, this paper shares the pipeline of the KG con-
struction using standard semantic web technologies.

Keywords. Knowledge graph, RDF reification, multi-valued properties, query
evaluation, educational resources.

1. Introduction

When teachers want to create a new course, they typically do a keyword search for (open)
Educational Resources (ER) on the web to reuse and integrate into their course. While
there are numerous valuable and relevant resources available (such as slides, videos,
figures, text, code, etc.), many remain undiscovered because they are not well connected.
Moreover, using these resources can present legal challenges if their licenses are not
compatible with the course’s license. These legal issues can create barriers for both the
teacher and the institution hosting the course. Ideally, the process of analysing available
resources to match a course plan and verifying licenses should not be time-consuming.
In our project, the goal is to design a solution that can identify a minimal, relevant set
of educational resources with licenses that can protect such set of resources, whether

1Corresponding Author: Manoé Kieffer, e-mail: Manoe.Kieffer@univ-nantes.fr.

Knowledge Graphs: Semantics, Machine Learning, and Languages
M. Acosta et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/SSW230008

94

or not the licenses are open. Our aim is to help teachers create content reusing relevant
resources and without having to focus on licensing aspects.

ERs can be described by their title, authors, language, license, etc., as well as the
subjects they cover. ERs’ subjects can be numerous but not equally relevant for the ER.
Some subjects are the main focus, while others are only mentioned briefly. Therefore, the
relevance of each subject should be identified, and their relationship with each ER should
be weighed accordingly. The best way to make ERs findable and reusable is to use the
principles of the Linked Data. Semantic web technologies will allow a detailed descrip-
tion and interconnection of ERs/The recent specification of RDF-star and SPARQL-star
sheds light on statement-level annotations. One of the first public work-drafts of RDF
1.2, introduces quoted triples as another kind of RDF term which can be used as the sub-
ject or object of another triple2. In our particular use case, statement-level reification will
allow annotating with scores the relation of ERs and the subjects they treat. As the num-
ber of subjects can be important, this reified relation is a multi-valued property. Thus,
efficiently dealing with multi-valued properties is important as well.

Multiple reification models with distinct syntax and performance implications for
storage and query processing exist. The main objective of this work is to experimentally
compare four statement-based reification models on four triplestores to determine the
most pertinent choice for our KG.

The contributions of this paper are twofold: (i) a methodology to build four versions
of a knowledge graph of ERs using statement-level reification, namely standard reifica-
tion, singleton property, named graphs and RDF-star, and (ii) an empirical evaluation of
four triplestores (Virtuoso, Jena, GraphDB, and Oxigraph) with a set of seven SPARQL
query templates grounded with up to six different instances (26 instantiated queries).

The rest of this paper is organised as follows. Section 2 explains the methodology we
follow to build the KG of ERs. Section 3 explains the pipeline used. Section 4 evaluates
experimentally the reification models. Section 5 describes the related works. Finally,
Section 6 outlines our future work and concludes.

2. Knowledge graph description

Our project, aims to empower teachers to facilitate the creation of licensable ERs based
on existing ones. The resources in our KG comprise unstructured ERs (documents,
videos, and audio files, etc.), which are semantically annotated with DBpedia resources.
By means of a wikification process, relevant DBpedia concepts related to ERs are used
to provide a comprehensive description of each resource. This section introduces the
used ontology (Section 2.1), an explanation of the wikification process (Section 2.2), and
statistics on our KG (Section 2.3).

2.1. Used ontology

Figure 1 depicts the used ontology. Consistent with the IEEE LOM standard (Learning
Object Metadata)3, we define ERs as LOM Learning Objects. The LOM standard sug-
gests a range of properties to describe learning objects, using common vocabularies such
as Dublin Core and FOAF (dct:title, dct:creator, dct:language, dct:licence, dct:format,
foaf:name, etc.).

2https://w3c.github.io/rdf-concepts/spec/#section-triples
3http://data.opendiscoveryspace.eu/ODS_LOM2LD/ODS_SecondDraft.html

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph 95

https://w3c.github.io/rdf-concepts/spec/#section-triples
http://data.opendiscoveryspace.eu/ODS_LOM2LD/ODS_SecondDraft.html

Figure 1. KG ontology.

The particularity of our ontology lies in the extension of the LOM description to
consider the subjects treated in the learning objects with relevance scores. To do this, we
use RDF statement-level reification. Reification allows making statements about state-
ments in a generic manner. For us, it will allow to state that an ER treats a particular sub-
ject (in our case a DBpedia resource) to some extent. Concretely, it will allow to annotate
the property dct:subject in a fact (unr:EducationalResource, dct:subject, dbr:Resource)
with relevance scores. These scores are determined with a wikification process, which
identifies pageRank and cosine similarity values in the range [0..1]. More information on
this process is provided in the next section.

Besides being reified, dct:subject is a multi-valued property, i.e., a subject-predicate
pair having several objects. These objects are DBpedia resources which are instances
of classes in DBpedia, Wikidata, and Yago ontologies. We consider also DBpedia cat-
egories, which are used in Wikipedia to organize articles and pages by subject mat-
ter. Since the goal of our KG is to identify ERs based on their subjects, DBpedia cate-
gories are essential. DBpedia resources are associated with their categories through the
dct:subject property (dbr:Resource, dct:subject, dbr:Category).

2.2. Wikification of educational resources

Entity linking techniques that map named entities to Wikipedia entities are called wikifi-
cation. Text wikification is the task of automatically extracting the most important words
and phrases in a document, and identifying for each such keyword the appropriate link
to a Wikipedia article [1]. The wikification process generally involves two phases: term
extraction and link disambiguation.

There are various approaches to wikification that differ in the techniques used for
extracting phrases and linking them to external resources. The wikification tool called
Wikifier has shown a good performance compared to some state-of-the-art approaches
[2]4. This tool identifies mentions - phrases extracted from the input document - and uses
them as hyperlinks between Wikipedia pages. The Wikipedia pages linked by a men-
tion are considered as candidate concepts for that mention. Wikifier constructs a bipartite
graph consisting of the mentions and their corresponding candidate concepts. The inter-
nal structure of hyperlinks between Wikipedia pages is then leveraged to weigh the edges

4https://wikifier.org

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph96

https://wikifier.org

(a) Connectivity of the DBpedia concepts. (b) Connectivity of ERs.

Figure 2. Statistics of the connectivity in the graph.

(mentions) of the bipartite graph. A mention may have several candidate concepts be-
cause the same text can lead to different Wikipedia pages. To disambiguate mentions, the
pageRank algorithm is applied over the graph. The concept with the highest pageRank
score is selected for each mention, resulting in a set of Wikipedia concepts representing
the input document. A threshold is then applied to retrieve the top-ranking concepts. In
addition, Wikifier calculates the cosine similarity between the input document and the
Wikipedia pages of the top-ranking concepts.

Currently, our project has collected a set of open educational resources that were
wikified in the X5GON project5.

2.3. Statistics and dataset content

There exist several vocabularies to describe RDF datasets. The VoID vocabulary [3]
is the most well-established vocabulary.Additionally, the DCAT vocabulary [4] is a
W3C recommendation to describe datasets, data services and data catalogs.We pro-
vide a description of our KG using VoID and DCAT in a VoID file6. The meta-
data for the dataset includes the label, license, SPARQL endpoint, provenance, pre-
fixes used, and general statistics such as the number of triples, entities, subjects, ob-
jects, properties, etc. Our class partition currently consists of roughly 45K learning ob-
jects (lom:LearningObject), 13K authors (foaf:Person), twelve licenses (odrl:Policy), and
2,2M categories (skos:Concepts)7 along with 135K DBpedia resources that serve as the
reified concepts of ERs. It is important to note that reification is employed to annotate
the dct:subject relation with two different annotations. The annotations are the pageRank
score and cosine similarity score discussed in Section 2.2, those are numerical values
between 0 and 1.

The distribution of the reified subjects (called concepts from now on) over ERs is
far from being uniform. We consider the connectivity of a concept as the number of
multi-valued properties (dct:subject) linking to it. Figure 2a shows that 100K over 135K

5https://www.x5gon.org
6https://gitlab.univ-nantes.fr/-/ide/project/clara/pipeline/tree/main/-/

VoIDstatistics/clara-metadata.ttl/
7We obtained the entire hierarchy of DBpedia categories.

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph 97

https://www.x5gon.org
https://gitlab.univ-nantes.fr/-/ide/project/clara/pipeline/tree/main/-/VoIDstatistics/clara-metadata.ttl/
https://gitlab.univ-nantes.fr/-/ide/project/clara/pipeline/tree/main/-/VoIDstatistics/clara-metadata.ttl/

Figure 3. Pipeline of the ETL (Extract, Transform, Load) process.

concepts have poor connectivity. Roughly 52K concepts are associated with a single ER,
while around 53K are connected to between 2 and 10 ERs, as shown in the first two
columns. The third column indicates that around 21K concepts connect between 11 and
1000 ERs. Lastly, the last column shows that 95 concepts have very high connectivity,
being used in more than 10K ERs.

The distribution of concepts by ER is shown in Figure 2b. This distribution corre-
sponds to the multi-valued property dct:subject. The first three columns show that the
majority of ERs are associated with less than 300 concepts (less than 300 values for the
property dct:subject for the same ER). On the other hand, the last three columns show
that only a small number of ERs (40 ERs) are linked to a high number of concepts.

The pageRank score of a concept is local to an ER, it depends on the number of
concepts that the Wikifier associates with this ER. The sum of the pageRank values of all
concepts linked to an ER is 1. Thus, the greater the number of concepts, the lower their
pageRank score.

3. Data transformation pipeline

Figure 3 shows the pipeline for our ETL process. All related files can be found in
the pipeline repository8. The extraction phase involves collecting data from a Postgres
database. The data is extracted as JSON files because one of the attributes of the Postgres
database contains JSON data, thus converting everything to JSON was deemed more
efficient. In the transformation phase, the JSON files are converted into semantic RDF
triples. To compare the different RDF reification models, four RML mappings were cre-
ated in order to obtain standard reification, singleton properties, named graphs, and RDF-
star. In particular, RML-star [5] is used to generate RDF-star data. SHACL is then used
to validate our RDF graphs. In the loading phase, 15 different docker containers were
loaded and setup using docker-compose. Jena, GraphDB, and Oxigraph, have one KG
instance by reification model. Virtuoso has only 3 KG instances because it does not sup-
ports RDF-star. The rest of this section focuses on explaining the four different reification
models, and then it explains the RDF-star mappings.
3.1. Reification models
Standard reification. The standard reification model was proposed within RDF primer
standardised by W3C [6]9. In this model, rdf:Statement is used to define the triple that

8https://gitlab.univ-nantes.fr/clara/pipeline
9https://www.w3.org/TR/rdf-primer/#reification

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph98

https://gitlab.univ-nantes.fr/clara/pipeline
https://www.w3.org/TR/rdf-primer/#reification

uns:S100 rdf:type rdf:Statement ;
 rdf:subject unr:ER ;
 rdf:predicate dct:subject ;
 rdf:object :Query_Language ;
 uno:cosineSimilarity "0.6" ;
 uno:pageRank "0.4" .

<< unr:ER dct:subject :Query_Language >> uno:cosineSimilarity "0.6" ;
 uno:pageRank "0.4" .

(a) Standard reification in Turtle (b) Named Graphs in N-quads

(c) Singleton properties in Turtle (d) RDF-Star in Turtle.

unr:ER <p-200> :Query_Language .
<p-200> rdf:singletonPropertyOf dct:subject;
 uno:cosineSimilarity "0.6" ;
 uno:pageRank "0.4" .

unr:ER dct:subject :Query_Language <g-100> .
<g-100> uno:cosineSimilarity "0.6" ;
 uno:pageRank "0.4" .

Figure 4. Syntax of the four reification models.

will be annotated (rdf:subject, rdf:predicate, and rdf:object). The defined statement can
be identified by a blank node or a URI. Figure 4(a) gives the representation in RDF
triples. It displays two score values annotated on a statement.

Named graphs. Carroll et al. [7] proposed an extension to the RDF data model that
allows RDF graphs to be named by URIs, which are referred to as named graphs. In this
approach, a named graph is represented as a pair (g, n), where g is an RDF graph and n
is an IRI, a blank node, or a default graph. The statements to be annotated are defined
in one RDF graph, while the annotations themselves are defined in another RDF graph.
The annotations are directly linked to this graph. Figure 4(b) shows the syntax for this
example.

Singleton properties. The singleton property model [8] proposes creating a unique
property for every triple that has associated metadata. In this model, a new node is created
to represent the new property, which is connected directly to the original annotation
property using the proposed property singletonPropertyOf. The same property is used
for all metadata associated with a statement. An example of RDF triples using this model
is shown in Figure 4(c).

RDF-Star. [9]10 proposed RDF-star and SPARQL-star as extensions to RDF and
SPARQL to enable graph nesting and simplify the representation of reified statements.
RDF-star and SPARQL-star allow for the recursive nesting of graphs, eliminating the
need for declaring edge identifiers that are linked with metadata. RDF-star enables the
nesting of triples within other triples as subjects or objects by using double angle brackets
� �. As a result, every reified statement can be interpreted as a single RDF triple. An
example of RDF-star reification is shown in Figure 4(d).

3.2. Mapping JSON to RDF

The aggregate of the JSON files used as input to generate the four versions of our KG
can be seen in Figure 5. Each ER is described by an id, a title, a description, etc. It can
have several authors and can be associated to several concepts.

We define four mappings, one for each reification model. We use the RML language
[10] to generate the RDF triples for standard reification, singleton property and named
graph. To generate RDF-star we use the RML-star [5] language. Listing 1 shows an
excerpt of the RML-star mapping used to transform the JSON data into RDF-star. This

10https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph 99

https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html

Figure 5. JSON aggregate of the source files for the RML mappings.

excerpt contains the RML-star rule that generates the triple with the reified property
dct:subject (Lines 1 to 16) and the rule to generate one annotation (Lines 18 to 33). Lines
2 to 6 indicate an iteration over every ER in the JSON file. Lines 7 to 9 define the id
of the ER as a subject for the triple. Lines 10 to 16 define the predicate for this subject
(dct:subject) and multiple objects. These multiple objects are the set of concepts obtained
from the JSON data. They are DBpedia resources treated as IRIs. Lines 19 to 23 again
iterate over every ER in the JSON file. This time to generate the annotation. Lines 24
to 26 show that :ER concept link, that is the name of the first rule, is now the subject.
Lines 27 to 33 define the annotation of the pageRank score, taken from the JSON under
the attribute “norm pageRank”. In a similar way, the annotation for cosineSimilarity is
generated.

We use Morph-KGC [11] as mapper to generate the RDF triples. Morph-KGC was
able to generate the four versions of our KG through the four mappings including the
RML-star mapping.

1 : E R c o n c e p t l i n k a rr : T r ip l e sMap ;
2 rml : l o g i c a l S o u r c e [
3 rml : s o u r c e ” j s o n / ER / normal . j s o n ” ;
4 rml : r e f e r e n c e F o r m u l a t i o n q l : JSONPath ;
5 rml : i t e r a t o r ” $. r e s o u r c e s [*] ” ;
6] ;
7 rr : sub jec tMap [
8 rr : t e m p l a t e ” h t t p s : / / unknown . com / r e s o u r c e /{ i d }” ;
9] ;

10 rr : p r e d i c a t e O b j e c t M a p [
11 rr : p r e d i c a t e dct : s u b j e c t ;
12 rr : ob jec tMap [
13 rml : r e f e r e n c e ” c o n c e p t s . d b P e d i a I r i ” ;
14 rr : termType rr : IRI ;
15]
16] .
17
18 : E R c o n c e p t c o n t e x t a rr : T r ip l e sMap ;
19 rml : l o g i c a l S o u r c e [
20 rml : s o u r c e ” j s o n / ER / ER 0 . j s o n ” ;
21 rml : r e f e r e n c e F o r m u l a t i o n q l : JSONPath ;
22 rml : i t e r a t o r ” $. r e s o u r c e s [*] ” ;
23] ;
24 rml : sub jec tMap [
25 rml : q u o t e d T r i p l e s M a p : E R c o n c e p t l i n k ;
26] ;
27 rr : p r e d i c a t e O b j e c t M a p [

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph100

28 rr : p r e d i c a t e uno : pageRank ;
29 rr : ob jec tMap [
30 rml : r e f e r e n c e ” c o n c e p t s . norm pageRank ” ;
31 rr : d a t a t y p e xsd : d o u b l e ;
32]
33] .

Listing 1: Excerpt of the RML mapping for RDF-star reification.

4. Experimental evaluation of reification models

In our KG, the relation dct:subject is reified with two annotations (uno:pageRank and
uno:cosineSimilarity). The number of values for this relation can be high (up to several
thousands of concepts by ER, cf. Figure 2b) thus, the number of annotations by ER can
be huge. The goal of this section is to compare four different reification models expressed
over a multi-valued property. The triplestores we analyse are Virtuoso, Jena, GraphDB,
and Oxigraph.

The rest of this section is organised as follows. First, Section 4.1 compares the four
analysed reification models in terms of syntax and number of triples. Then, Section 4.2
describes the setup of our experiments. Section 4.3 shows the results of our experiments,
comparing the size of the triplestores and the execution times of the different queries.
Finally, Section 4.3 analyses the obtained results to extract our conclusion. All queries,
the corresponding scripts, and the experiment results (raw execution times and plots) can
be found in the queries comparison repository11.

4.1. Syntax comparison of analysed reification models

Described reification models differ in various criteria such as the total number of triples,
flexibility, and syntax support.

Number of triples. Standard reification is the most costly approach since it needs five
triples for each reified statement. Singleton properties needs three triples. Named graphs
and RDF-star are the most compact models needing two and one triples respectively.

The second column of Table 1 shows the number of triples by reification model.
In our KG, around 12M of triples are shared among all reification models. And more
than 8M statements are reified. This amount of statements leads to the observed differ-
ences. As expected, RDF-star is the most compact model, followed by named graphs.
The bulkiest model is standard reification followed by singleton properties.

Flexibility. All of these reification models are flexible when it comes to adding new
annotations to an already reified statement. Adding new annotations only requires adding
one additional triple for each approach. Additionally, all of these models cause no is-
sues with multi-valued properties. Also, one advantage specific to named graphs is that
reification can be defined also for a group of triples or even a dataset.

Syntax support. Standard reification and singleton properties conform to the core
RDF model proposed in 2004. Named graphs represent an extension to the triple RDF
model and is part of the standard RDF1.1, which was published in 2014. RDF-star pro-
poses to extend the RDF specification further. Concerning the query language, all of
these models are supported in the SPARQL standard, except for RDF-star which pro-
poses SPARQL-star as a query language.

11https://gitlab.univ-nantes.fr/clara/queries_comparison

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph 101

https://gitlab.univ-nantes.fr/clara/queries_comparison

Number of
Statements Virtuoso Jena GraphDB Oxigraph

Standard reification 61,865,751 3.6 GB 52 GB 8.5 GB 6.5 GB
Singleton properties 45,335,637 3.6 GB 48 GB 257 GB 5.7 GB

Named graphs 37,071,104 3.2 GB 51 GB 6.4 GB 9 GB
RDF-Star 37,055,676 - 50 GB 6.6 GB 12 GB

Table 1. Generated DB size of different reification models.

The implementations of RDF-star12 can follow three approaches: PG (Property
Graph), SA (Separate Assertion), or both13. In the SA mode, quoted triples are not neces-
sarily asserted in the graph. In the PG mode, any quoted triple is automatically asserted.
Jena supports both modes, Oxigraph and GraphDB both support only the SA mode for
RDF-Star. And Virtuoso does not support RDF-star at all.

4.2. Experimental setup
Experiments were run on a virtual machine with 128GB of RAM, 2GHz with 32 cores,
on a Debian GNU/Linux 11 (Bullseye). All tests were run using docker images of the
triplestores14 15 16 17. All triplestores were parameterized with a query timeout of 30
minutes and given access to 16 GB of RAM. Only Oxigraph was not parameterized
as we did not find the way to do it. GraphDB was also parameterized to use a context
index when dealing with the named graphs version of the graph. All four triplestores
were evaluated with the four reification models except for Virtuoso that does not support
RDF-star, and GraphDB does not support singleton properties in an efficient way. This
is because GraphDB makes the assumption that there will be only a small number of
properties in the graph. This issue is described on the website of GraphDB18. Details on
how exactly the experiments were run are given at the end of this section.

Query templates. Based on the series of queries A, B, and F used in [12], we define
seven query templates that are presented as SPARQL-star queries for simplicity. The
templates will be referred to as Q1 to Q7. All templates can be seen in Figure 6. Q1 and
Q5 are grounded with instances of ERs while Q2, Q3, Q4, and Q6 are grounded with
instances of concepts. Q7 is not grounded. In these queries, only the subjects are quoted.
Q2, Q3, and Q4 are star-shaped queries.

Q1 is a property path query. It returns the list of concepts and the associated hierarchy
of categories (with skos:broader*) for a given ER.

Q2 is a FILTER query that compares the annotations of a concept. Given a concept,
it returns the associated ERs whose pageRank score is greater than the cosine
similarity using the FILTER keyword.

Q3 is a join query. It returns the set of ERs associated to three given concepts.
Q4 is similar to Q3 but with a FILTER that specifies how the three pageRank scores

must relate together.

12https://w3c.github.io/rdf-star/implementations.html
13https://w3c.github.io/rdf-star/cg-spec/editors_draft.html#sa-mode-and-pg-mode
14https://hub.docker.com/r/secoresearch/fuseki
15https://hub.docker.com/r/tenforce/virtuoso
16https://hub.docker.com/r/oxigraph/oxigraph
17https://hub.docker.com/r/khaller/graphdb-free
18https://graphdb.ontotext.com/documentation/10.0/devhub/rdf-sparql-star.html

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph102

https://w3c.github.io/rdf-star/implementations.html
https://w3c.github.io/rdf-star/cg-spec/editors_draft.html#sa-mode-and-pg-mode
https://hub.docker.com/r/secoresearch/fuseki
https://hub.docker.com/r/tenforce/virtuoso
https://hub.docker.com/r/oxigraph/oxigraph
https://hub.docker.com/r/khaller/graphdb-free
https://graphdb.ontotext.com/documentation/10.0/devhub/rdf-sparql-star.html

SELECT ?concept ?categorie
WHERE {
 [ER] dct:subject ?concept .
 ?concept dct:subject/skos:broader* ?categorie .
}

SELECT ?er ?pr ?cosine
WHERE {
 << ?er dct:subject [concept] >> uno:pageRank ?pr ;
 uno:cosineSimilarity ?cosine .

 FILTER(?pr > ?cosine)
}

SELECT ?er ?pr1 ?pr2 ?pr3
WHERE {
 << ?er dct:subject [concept_1] >> uno:pageRank ?pr1 .
 << ?er dct:subject [concept_2] >> uno:pageRank ?pr2 .
 << ?er dct:subject [concept_3] >> uno:pageRank ?pr3 .
}

SELECT ?title ?license ?format ?language ?publisher
?creator ?created ?description ?concept ?pr
WHERE {
 << [ER] dct:subject ?concept >> uno:pageRank ?pr .
 [ER] dct:title ?title ;
 dct:license ?license ;
 dct:format ?format ;
 dct:language ?language ;
 dct:publisher ?publisher .

 OPTIONAL { [ER] dct:creator ?creator }
 OPTIONAL { [ER] dct:created ?created }
 OPTIONAL { [ER] dct:description ?description }
}

Q1 Q2

Q3 Q4

Q5

SELECT ?er ?pr
WHERE {
 { << ?er dct:subject [concept_1] >> uno:pageRank ?pr }
 UNION
 { << ?er dct:subject [concept_2] >> uno:pageRank ?pr }
 UNION
 { << ?er dct:subject [concept_3] >> uno:pageRank ?pr }
}

Q6

SELECT ?concept (COUNT(?er) as ?number_of_er)
WHERE {
 << ?er dct:subject ?concept >> uno:pageRank ?pr .

 FILTER(?pr > 0.01)
}
GROUP BY ?concept

SELECT ?er ?pr1 ?pr2 ?pr3
WHERE {
 << ?er dct:subject [concept_1] >> uno:pageRank ?pr1 .
 << ?er dct:subject [concept_2] >> uno:pageRank ?pr2 .
 << ?er dct:subject [concept_3] >> uno:pageRank ?pr3 .

 FILTER(?pr1 > ?pr2 && ?pr2 > ?pr3)
}

Q7

Figure 6. Query templates

Q5 is join query that in addition uses the OPTIONAL clause. It returns all the informa-
tion available for a given ER, the list of associated concepts, and the corresponding
pageRank score.

Q6 is a UNION query that gets the ERs associated with one of 3 given concepts, using
the UNION operator.

Q7 is a GROUP BY query that uses the COUNT operator. It returns the number of
ERs by concept and it filters out the results lower than a pageRank threshold.

Groundings. Query templates are grounded with instances selected beforehand. We
chose the groundings in order to evaluate the difference between multi-valued properties
with few subjects or objects and multi-valued properties with a large number of subjects
or objects. We use the multi-valued property dct:subject linking our ERs and their corre-
sponding DBpedia concepts. This multi-valued property goes both ways, one subject to
multiple objects, and one object from multiple subjects. We selected six ERs (the subject
of the multi-valued property) and six concepts (the object of the multi-valued property).
The first two ERs lead to a small number of multi-valued properties (3 and 7 objects), the
next two have a medium number of multi-valued properties (108 and 270 objects), and
the last two have a large number of multi-valued properties (1067 and 2053 objects). For
DBpedia concepts, the first two concepts lead to a small number of multi-valued proper-

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph 103

ties (3 and 13 subjects), the next two have a medium number of multi-valued properties
(620 and 1123 subjects), and the last two have a large number of multi-valued properties
(11486 and 21523 objects).

Methodology. Queries were instantiated with a number of groundings depending
on the query as some queries need three different concepts (Q3, Q4, Q6). In that case
only three grounding were given, each composed of three concepts. Instantiated queries
were executed sequentially in increasing order of the size of the corresponding multi-
valued property. Each query was executed 3 times sequentially. So, the capability of the
triplestores to cache previous results had an important role. Queries were sent to the
SPARQL endpoints with HTTP using a Python script.

4.3. Experimental results

This section first compares the size of the triplestores, then it explains the query execution
times, and finishes with an analysis of obtained results.

Storage size

Columns 3 to 6 of Table 1 shows the size of the different triplestores with the different
reification models. This table allows to see the differences in the storage size, but it also
shows how efficiently the triplestores store each of the four reification models.

In general, Virtuoso uses the least amount of storage space and Jena uses the most.
Storage costs do not change a lot across the reification models except for GraphDB that
need 257 GB to store our KG with the singleton properties version. This observation
was already put into light in [13]. The small difference of the storage volume by column
(except for GraphDB using singleton properties) can be explained by the fact that an
important part of the graph is common to all reification models.

Query execution results

A visualization of the execution times in seconds per query and triplestore is presented
in Figures 7 and 8. Execution time is presented in a logarithmic scale. Each bar considers
all corresponding groundings (except for Q1). The beginning of a bar indicates the fastest
execution time and the top the largest. The black line is the average execution time and
the yellow line is the median.

Figure 7(a) displays the results for Q1 which is a star property path query. Q1 is very
challenging as it navigates multiple times (once for each concept linked to the grounded
ER) through the dense hierarchy of DBpedia categories. Only the first four groundings
were successfully executed. Queries with large groundings crashed. In general, Q1 has
large execution times (sometimes even reaching 12 minutes for Oxigraph). We recall that
GraphDB does not scale well using singleton properties so we were unable to experiment
it with our KG. The overall observation is that Virtuoso outperforms for Q1 regardless
of the reification model (with all averages being about 13 seconds), except for RDF-star,
which is not supported.

Figure 7(b) displays the results for Q2 whose particularity is to compare two an-
notations of the same statements. The general observation is that Virtuoso outperforms
the other triplestores except for named graphs where Oxigraph behaves very well. For
standard reification, Virtuoso is the fastest (with an average of 0.16 seconds) followed
by GraphDB (with an average of 0.38 seconds), then by Jena (with an average of 6.21

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph104

(a) (b)

(c) (d)

Figure 7. Comparison of Execution Time for Queries Q1-Q4 across Different Data Stores and Reification
Approaches

seconds), and finally Oxigraph (with an average of 8.91 seconds). For singleton proper-
ties, like in Q1, only Virtuoso achieves good results. Jena and GraphDB have similar re-
sults (around 1 minute while Virtuoso achieves results on average less than 0.1 seconds).
For named graphs, both Virtuoso and Oxigraph achieve similar results (around 0.1 sec-
ond). They are followed by Jena, then by GraphDB. For RDF-star, once again GraphDB
achieves good results followed by Oxigraph and Jena.

Figure 7(c) displays the results for Q3 that is a join query. Clearly, this figure shows
that join queries are best executed over named graphs (all triplestores having an average
of around 0.015 seconds). Concerning standard reification and singleton properties, Vir-
tuoso outperforms the other three triplestores. For singleton properties again only Virtu-
oso achieves good results. For RDF-star, GraphDB achieves the best results (on average
around 0.015 seconds). It is followed by Oxigraph, then far by Jena.

Figure 7(d) displays the results for Q4 that is a join query similar to Q3 but with a
FILTER comparing the pageRank scores. Results are very similar to those of Q3. Execu-
tion times are higher than for Q3 but in general the cost of the FILTER is not very high,
except for Oxigraph over named graphs. The average of Virtuoso, Jena, and GraphDB
are around 0.01 seconds for named graphs, and Oxigraph’s average is of 24.6 seconds.
Again, GraphDB performs the best with RDF-star (in average 0.009 seconds).

Figure 8(a) displays the results for Q5. The singularity of this query is the use of the
OPTIONAL clause. Again globally Virtuoso behaves the best (in average around 0.047

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph 105

(a) (b)

(c)

Figure 8. Comparison of Execution Time for Queries Q5-Q7 across Different Data Stores and Reification
Approaches

seconds). For standard reification, GraphDB is as good as Virtuoso (with in average 0.041
seconds). GraphDB performs the best for RDF-star and Jena performs the worst.

Figure 8(b) displays the results of Q6. The particularity of this query is the use of
the UNION clause. This query is globally well executed over named graphs (average
of around 0.20 seconds) except for Oxigraph (in average of 6.99 seconds). In general
GraphDB and Virtuoso behave the best. It is worth noting that again GraphDB executes
well over RDF-star.

Figure 8(c) displays the results of Q7. The challenging aspect of this query is the
GROUP BY operator. For that specific query, it is clear that Virtuoso has the best exe-
cution times regardless of the reification model (on average 1 or 2 seconds). The other
triplestores are significantly slower (over 10 seconds), except Oxigraph with RDF-star
(on average 4.09 seconds). Virtuoso is followed by GraphDB, then by Jena, and lastly
by Oxigraph. It is worth noting that for Q7 Oxigraph behaves better than GraphDB on
RDF-star.

Result analysis

The experimental evaluation done over our KG allows to draw the following conclu-
sions. Focus on reification models. (a) Singleton properties is the least efficient reifi-
cation model in our experiments. Only Virtuoso manages well this reification model.
(b) Globally, standard reification and named graphs lead to good performances but named
graphs is slightly better. (c) Even if in general RDF-star leads to bad execution times,

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph106

frequently GraphDB obtains good results. (d) RDF-star is an elegant and compact model
for statement-based annotations but triplestores should implement it more efficiently.

Focus on triplestores. (a) In general, Oxigraph is the least efficient triplestore in our
experiments. However it is important to highlight that it performs better than Jena with
RDF-star. (b) The execution times of Jena are consistently in second or third position but
overall it outperforms Oxigraph. (c) In some experiments, GraphDB performs similarly
to Virtuoso. (d) Virtuoso outperforms in most of our experiments but it should be noted
that it does not support RDF-star.

The final conclusion for our KG is that the best choice would be Virtuoso with
named graphs. Both standard reification and named graphs with Virtuoso exhibit similar
performance. Named graph is slightly faster in some cases, in particular with join queries.

5. Related Works

Several works studied different reification methods and compared them according to
several criteria. [13] focused on Wikidata and its representation in RDF using reification
based on n-ary relations, standard reification, singleton properties and named graphs.
Authors compared these models over five triplestores: 4store, Blazegraph, GraphDB,
Jena, and Virtuoso. Their performance were measured based on 14 queries. Their results
suggested that the singleton properties model was hardly supported but no other model
was an outright winner. Concerning query performance, Virtuoso was the best followed
by GraphDB and Blazegraph.

[14] realized an analysis of standard reification, named graphs, n-ary relations, sin-
gleton properties, companion properties (proposed in that paper) and RDF-star in its early
stages. Experiments used Wikidata and DBpedia datasets on the triplestores Blazegraph,
Stardog and Virtuoso. As DBpedia does not have singificant metadata, authors build a
dataset with the Wikipedia revision history focusing on a company dataset. The experi-
ments show that when the granularity of metadata is not by statement, companion prop-
erties and named graphs outperform. Concerning statement-level metadata, while stan-
dard reification results in the highest number of triples, it consumes the least storage in
the database files and named graphs the most. This is because additional index structures
for the graph identifiers are maintained. Concerning query performance, metadata char-
acteristics have an impact on the reification models. Named graphs and RDF-star support
queries against meta-metadata much better than the other models. In general, RDF-star
can compete with named graphs if the metadata is on statement level. Moreover, both
offer the best trade-off for mixed and data query workloads. In our experiments, queries
do not contain data (i.e., triples) and we do not test querying meta-metadata.

[15] used three simple counting queries to analyse the internal representations of
RDF-star in Stardog, Blazegraph and ExecuteSPARQLStar.19 Experiments showed the
divergence of the implementations of RDF-star when dealing with nested RDF-star state-
ments. Blazegraph and ExecuteSPARQLStar behave similarly but Stardog was not able
to deal correctly with nested RDF-star statements. That is because Stardog flattens the
nested statements.

[16] proposed a data model called Labeled k-partite Graph (LKG) for storing and
querying RDF triples with metadata. Authors compared experimentally LKG with Sin-

19https://github.com/RDFstar/RDFstarTools

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph 107

https://github.com/RDFstar/RDFstarTools

gleton Property, RDF Reification, Named Graph and PaCE [17]. Used datasets were
(with and without meta-knowledge): SPARQL Performance Benchmark (SP 2 Bench),
the Biomedical Knowledge Repository (BKR), and the Gov-track. Results highlighed
that LKG outperforms these methods by generating fewer statements, having a smaller
graph size, avoiding resource redundancy, and achieving faster query response time.

[12] proposes a benchmark (dataset and set of queries) to analyse reification mod-
els. To illustrate the utility of the benchmark, authors analysed querying performance,
storage efficiency and usability on the Stardog triplestore using three reification mod-
els: standard reification, singleton properties and RDF-star. Authors used the Biomed-
ical Knowledge Repository (BKR) dataset20 in order to make their results comparable
with [8] that compares singleton property against standard reification. Twelve queries are
used to evaluate performance. Five of these queries were proposed in this work to focus
on SPARQL-star. Experimental results suggest that singleton property seems to have the
worst performance. Probably because of the high number of unique properties and be-
cause indexes are usually not optimised with that in mind. Authors also observed that for
simple queries, standard reification performs better than RDF-star. For complex queries,
clearly, RDF-star outperforms standard reification.

[18] presents a novel approach for representing metadata, which outperforms ex-
isting reification models such as Singleton Property, Named Graph, PaCE, Compan-
ion Property, N-ary relations, RDF-star, and RDF-star [19]. The authors employed var-
ious datasets for their study, including a BKR dataset, a Gov-track dataset, a Synthetic
dataset, and a dataset obtained from [20]. Through experiments, the proposed approach
demonstrates advantages in handling multi-dimensional and nested metadata with re-
duced graph size and fewer generated statements.

6. Conclusion

This paper presented the pipeline for the generation of a knowledge graph (KG) of educa-
tional resources (ER) and the evaluation of several reification models with several triple-
stores. The objective was to identify the most suitable approach for this KG. To achieve
this, we defined seven query templates instantiated in 26 grounded queries. Within the
KG, reification was used in a multi-valued property to add two annotations whose range
is between 0 and 1. Based on the insights derived from this experimental study, we were
able to draw meaningful conclusions. Both, standard reification and named graphs with
Virtuoso, exhibit similar performance. Named graphs show a slight advantage in some
cases, in particular for join queries. RDF-star should be implemented more efficiently
if quoted triples are included in RDF 1.2. Finally, for the KG presented in this paper,
Virtuoso with named graphs, emerges as a good choice.

Acknowledgments

This work has received a French government support granted to the Labex Cominlabs
excellence laboratory and managed by the National Research Agency in the “Investing
for the Future” program under reference ANR-10-LABX-07-01. Authors thank Master
students in Computer Science of Nantes University for her participation in some aspects
of this work.

20https://zenodo.org/record/3894746#.ZAtF0S_pNpQ

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph108

https://zenodo.org/record/3894746#.ZAtF0S_pNpQ

References

[1] Mihalcea R, Csomai A. Wikify! Linking documents to encyclopedic knowledge. In: Conference on
Information and Knowledge Management (CIKM); 2007. doi:10.1145/1321440.1321475.

[2] Brank J, Leban G, Grobelnik M. Semantic annotation of documents based on wikipedia concepts.
Informatica. 2018;42(1):23-32.

[3] Alexander K, Cyganiak R, Hausenblas M, Zhao J. Describing Linked Datasets. In: Workshop on Linked
Data on the Web (LDOW); 2009. .

[4] Albertoni R, Browning D, Cox S, Gonzalez-Beltran A, Perego A, Winstanley P, et al.. Data catalog
vocabulary (DCAT)-version 2; 2020. Available from: https://www.w3.org/TR/vocab-dcat-2/.

[5] Delva T, Arenas-Guerrero J, Iglesias-Molina A, Corcho O, Chaves-Fraga D, Dimou A. RML-star: A
declarative mapping language for RDF-star generation. In: International Semantic Web Conference
(ISWC) Posters, Demos and Industry tracks; 2021. p. 5.

[6] Manola F, Miller E, McBride B, et al. RDF primer. W3C recommendation. 2004. Available from:
https://www.w3.org/TR/rdf-primer/.

[7] Carroll JJ, Bizer C, Hayes P, Stickler P. Named graphs. Journal of Web Semantics. 2005;3(4):247-67.
doi:10.1016/j.websem.2005.09.001.

[8] Nguyen V, Bodenreider O, Sheth A. Don’t like RDF reification? Making statements about statements
using singleton property. In: International World Wide Web Conference (WWW); 2014. p. 759-70.
doi:10.1145/2566486.2567973.

[9] Hartig O. Foundations of RDF* and SPARQL* (An alternative approach to statement-level metadata in
RDF). In: International Workshop on Foundations of Data Management and the Web (AMW); 2017. .

[10] Dimou A, Vander Sande M, Colpaert P, Verborgh R, Mannens E, Van de Walle R. RML: A generic
language for integrated RDF mappings of heterogeneous data. Workshop on Linked Data on the Web
(LDOW). 2014;1184.

[11] Arenas-Guerrero J, Iglesias-Molina A, Chaves-Fraga D, Garijo D, Corcho O, Dimou A. Morph-KGC
star: Declarative generation of RDF-star graphs from heterogeneous data; 2022.

[12] Orlandi F, Graux D, O’Sullivan D. Benchmarking RDF metadata representations: Reification, singleton
property and RDF. In: International Conference on Semantic Computing (ICSC); 2021. p. 233-40.
doi:10.1109/ICSC50631.2021.00049.

[13] Hernández D, Hogan A, Krötzsch M. Reifying RDF: What works well with Wikidata? International
Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS). 2015;1457:32-47.

[14] Frey J, Müller K, Hellmann S, Rahm E, Vidal ME. Evaluation of metadata representations in RDF
stores. Semantic Web Journal (SWJ). 2017;10:205—229. doi:10.3233/SW-180307.

[15] Orlandi F, Graux D, O’Sullivan D. How many stars do you see in this constellation? In: European
Semantic Web Conference (ESWC), poster demo; 2020. p. 175-80. doi:10.1007/978-3-030-62327-2 30.

[16] Sen S, Malta MC, Katoriya D, Dutta B, Dutta A. Labeled k-partite Graph for Statement Annotation
in the Web of Data. In: 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT). IEEE; 2020. p. 63-71. doi:10.1109/WIIAT50758.2020.00014.

[17] Sahoo SS, Bodenreider O, Hitzler P, Sheth A, Thirunarayan K. Provenance Context Entity (PaCE): Scal-
able provenance tracking for scientific RDF data. In: Scientific and Statistical Database Management:
22nd International Conference, SSDBM 2010, Heidelberg, Germany, June 30–July 2, 2010. Proceedings
22. Springer; 2010. p. 461-70. doi:10.1007/978-3-642-13818-8 32.

[18] Sen S, Katoriya D, Dutta A, Dutta B. RDFM: An alternative approach for representing, storing, and
maintaining meta-knowledge in web of data. Expert Systems with Applications. 2021;179:115043.
doi:10.1016/j.eswa.2021.115043.

[19] Schueler B, Sizov S, Staab S, Tran DT. Querying for meta knowledge. In: Proceedings of the 17th
international conference on World Wide Web; 2008. p. 625-34. doi:10.1145/1367497.1367582.

[20] Fu G, Bolton E, Rosinach NQ, Furlong LI, Nguyen V, Sheth A, et al. Exposing provenance metadata
using different RDF models. arXiv preprint arXiv:150902822. 2015. doi:10.48550/arXiv.1509.02822.

M. Kieffer et al. / Evaluating Reification with Multi-Valued Properties in a Knowledge Graph 109

https://www.w3.org/TR/vocab-dcat-2/
https://www.w3.org/TR/rdf-primer/

