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Abstract. Purpose: The query language GraphQL has gained significant traction
in recent years. In particular, it has recently gained the attention of the semantic
web and graph database communities and is now often used as a means to query
knowledge graphs. Most of the storage solutions that support GraphQL rely on a
translation layer to map the said language to another query language that they sup-
port natively, for example SPARQL. Methodology: Our main innovation is a multi-
way left-join algorithm inspired by worst-case optimal multi-way join algorithms.
This novel algorithm enables the native execution of GraphQL queries over RDF
knowledge graphs. We evaluate our approach in two settings using the LinGBM
benchmark generator. Findings: The experimental results suggest that our solution
outperforms the state-of-the-art graph storage solution for GraphQL with respect to
both query runtimes and scalability. Value: Our solution is implemented in an open-
sourced triple store, and is intended to advance the development of representation-
agnostic storage solutions for knowledge graphs.
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1. Introduction

Knowledge graphs serve as the data backbone of an increasing number of applications.
Examples of such applications include search engines, recommendation systems, and
question answering systems [1,2]. Consequently, efficient storage and querying solutions
for knowledge graphs are imperative. Many triple stores [3,4,5,6,7,8,9,10] and graph
databases [11,12] have hence been developed in recent decades. Used primarily by the
semantic web community, triple stores process RDF knowledge graphs. A popular rep-
resentation model among the graph database community is the property graph model
[2,13]. While SPARQL is the designated query language for RDF, multiple languages
have been developed to query property graphs (e.g., Cypher [14] and Gremlin [15]). Re-
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cently, GraphQL, a query language for APIs, has attracted the attention of both the graph
database [16,17] and the semantic web [18,19,20,21] communities.

The focus of the semantic web community regarding GraphQL has been on the de-
velopment of query translation tools [18,20,21]. These tools translate GraphQL queries
into SPARQL queries, which are then issued to a triple store. A drawback of such so-
lutions is that the results produced by triple stores need to be rewritten, since GraphQL
dictates a strict response format. This process adds a significant overhead to the execu-
tion of queries [18, Table 3], especially in cases where the results are large. To the best
of our knowledge, there are no publicly available triple stores that treat GraphQL as a
first-class citizen.

While most constructs for processing basic graph patterns can be exploited in a
straightforward manner for GraphQL processing, the formal semantics of GraphQL [22]
demand the use of left-join operations for the evaluation of GraphQL queries. However,
conventional two-way left-join operations are not suitable for the evaluation of GraphQL
queries, as the results of such queries can be constructed incrementally [22]. We hence
focus on presenting a novel multi-way left-join algorithm inspired by worst-case opti-
mal join algorithms [23], which can be used to enumerate GraphQL queries incremen-
tally. By implementing our approach into a state-of-the-art triple store, we provide the
first publicly available triple store that treats GraphQL queries as first-class citizens.
We carried out an extensive evaluation using a synthetic benchmark generator, namely
LinGBM [24], and the results suggest that our implementation is able to outperform a
state-of-the-art graph storage solution providing GraphQL support, namely Neo4j.

The rest of this paper is structured as follows. The preliminaries are provided in
Section 2. In Section 3, we present our multi-way left-join algorithm and show how
to natively evaluate GraphQL queries over RDF graphs. We evaluate our approach in
Section 4. We discuss related works in Section 5 and conclude in Section 6.

2. Preliminaries

Here, we introduce the concepts and the semantics of GraphQL that we use throughout
this work along with their formal definitions as per [22]. We also briefly introduce worst-
case optimal multi-way join algorithms, which have inspired our proposed algorithm.

2.1. GraphQL

GraphQL is a query language that was designed to simplify communication between
clients and application servers. One of the main characteristics of GraphQL is that it
is strongly typed. GraphQL services—i.e., servers and data sources whose data can be
accessed and modified via GraphQL operations—expose a GraphQL schema to their
clients by which incoming requests must abide. This schema defines a type system that
describes the structure of the underlying data of the GraphQL service and the operations
the service supports. Another important aspect of GraphQL is the hierarchical structure
of its operations and responses. GraphQL operations form a tree structure that specifies
the traversal on top of the underlying graph and the information that should be extracted
from the nodes at each step of the traversal. In turn, the responses should follow the hi-
erarchy defined by their respective operation. The syntax and capabilities of GraphQL,
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as well as the responsibilities of GraphQL services, are detailed in the language’s offi-
cial specification [25]. Even though the specification describes how services should han-
dle the requests they receive, it does not provide a formal specification of the semantics
of the language. Consequently, studying the expressiveness and complexity of the lan-
guage remained a challenge. To tackle the lack of formal semantics and the consequences
thereof, Hartig and Pérez [22] provide formal semantics for GraphQL queries that consist
of fields, field aliases and inline fragments. The semantics rely on the formal definition
of GraphQL schemata and graphs as well as the formalized syntax of GraphQL queries.
Here, we reintroduce the definitions presented in [22].

The formal definitions presented below rely on the following sets. Let Fields be an
infinite set of field names and F ⊂ Fields a finite subset of Fields. Let A and T be finite
sets of argument names and type names, respectively, where T is the disjoint union of
OT (object type names), IT (interface type names), UT (union type names) and Scalars
(scalar type names). Last, let LT = {[t] | t ∈ T} be the set of list types constructed from
T and Vals be a set of scalar values.

Definition 2.1 (GraphQL schema [22]) A GraphQL schema S over (F,A,T ) is com-
posed of the following components:

• fieldsS : (OT ∪ IT )→ 2F that assigns a set of fields to every object type and every
interface type,

• argsS : F → 2A that assigns a set of arguments to every field,
• typeS : F∪A→ T ∪LT that assigns a type or a list type to every field and argument,

where arguments are assigned scalar types,
• unionS : UT → 2OT that assigns a nonempty set of object types to every union type,
• implS : IT → 2OT that assigns a set of object types to every interface,
• rootS ∈ OT that represents the query root type.

Example 2.1 Consider the following GraphQL schema S
interface Entity { type Company impl Entity {

id:String id:String

email:String name:String

} email:String

type Person impl Entity { employees :[ Person]

id:String }

fname:String type Query {

lname:String people(lname:String ):[ Person]

email:String companies :[ Company]

age:Int }

} schema { query:Query }

Let F = { people, companies, employees, fname, age, id, lname, email,

name }, A = { lname }, OT = { Query, Company, Person }, IT = { Entity },
UT = {}, and Scalars = { String, Int }. The GraphQL schema S is formalized over
(F,A,T ) as follows (we omit several assignments for brevity):

argsS(people) = {lname}, fieldsS(Entity) = {id, email}, typeS(id) = String,
fieldsS(Person) = {id, fname, lname, email, age}, rootS = Query.
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In practice, GraphQL services are implemented on top of data sources that adopt different
data models (e.g., relational databases and graph databases). To provide the semantics
of GraphQL queries in a unified manner, Hartig and Pérez [22] introduced the notion
of GraphQL graphs. GraphQL graphs are logical constructs that abstract the underlying
data sources of GraphQL services.

Definition 2.2 (GraphQL graph [22]) A GraphQL graph over (F,A,T ) is a tuple G =
(N,E,τ,λ ,ρ) with the following elements:

• N is a set of nodes,
• E is a set of edges of the form (u, f [a],v), where u,v ∈ N, f ∈ F, and a is a partial

mapping from A to Vals,
• τ : N → OT is a function that assigns a type to every node,
• λ is a partial function that assigns a scalar value ν ∈ Vals or a sequence [ν1 . . .νn]

of scalar values (νi ∈ Vals) to some pairs of the form (u, f [a]) where u ∈ N, f ∈ F
and a is a partial function from A to Vals,

• ρ ∈ N is a distinguished node called the root node.

Definition 2.3 (GraphQL query [22]) A GraphQL query over (F,A,T ) is an expres-
sion φ constructed from the following grammar where [,],{,},: and on are terminal
symbols, t ∈ OT ∪ IT ∪UT , f ∈ F, � ∈ Fields, and α is a partial mapping from A to Vals:

φ ::= f[α] | � : f[α] | on t{φ} | f[α]{φ} | � : f[α]{φ} | φ . . .φ .

Example 2.2 Examples of GraphQL queries conforming to the GraphQL schema S of
Example 2.1 are the following:

φ1 = people(lname: "Doe") { fname email } and
φ2 = companies { name employees { id lname } } .

Both queries demonstrate the hierarchical structure of GraphQL queries. For example,
φ2 accesses fields in the first level that belong to the object type Company. In the second
level, it accesses fields of the object type Person, as typeS(employees) = [Person].

GraphQL queries of particular interest are those that are non-redundant and in ground-
typed normal form. According to [22, Theorem 3.8], every GraphQL query can be trans-
formed into an equivalent query that is non-redundant and in ground-typed normal form.
An important characteristic of such queries is that their response can be constructed with-
out being subjected to field collection [25, Section 6.3.2]. This allows non-redundant
GraphQL queries in ground-typed normal form to be evaluated in time linear to the size
of their response [22, Corollary 4.3].

Definition 2.4 (GraphQL semantics [22]) Let G = (N,E,τ,λ ,ρ) be a GraphQL graph
and φ a non-redundant GraphQL query in ground-typed normal form, both conforming
to a GraphQL schema S over (F,A,T ). The evaluation of φ over G from node u ∈ N,
denoted by �φ�u

G, is captured by Equation 1.2 The evaluation of φ over G, denoted by
�φ�G, is simply �φ�

ρ
G.

2The expressions � : f[α]{φ} and � : f[α] are evaluated by replacing f with � in the first two rules’ results.
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� f[α]�u
G =

{
f : λ (u, f [a]) if (u, f [a]) ∈ dom(λ ),
f : null else.

� f[α]{φ}�u
G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f : [{�φ�v1
G } . . .�φ�

vk
G ]

if typeS( f ) ∈ LT and
{v1 . . .vk}= {vi | (u, f [a],vi) ∈ E},

f : {�φ�v
G}

if typeS( f ) /∈ LT and
(u, f [a],v) ∈ E,

f : null
if typeS( f ) /∈ LT and there is no
v ∈ N s.t. (u, f [a],v) ∈ E.

�on t{φ}�u
G =

{
�φ�u

G if t ∈ OT and τ(u) = t,
ε else (ε denotes the empty word).

�φ1 . . .φk�
u
G = �φ1�

u
G . . .�φk�

u
G.

(1)

In this work, we assume that A ⊂ F . More specifically, we restrict the set of arguments
of a field f ∈ F to be the set of scalar fields of its type, i.e., argsS( f ) ⊆ { f ′ | f ′ ∈
fieldsS(typeS( f )), typeS( f ′) ∈ Scalars}. Hence, leaf fields are not assigned any argu-
ments, and the expressions f[α] and � : f[α] can be written as f and � : f , respectively
[22]. In [22], the sets F and A are assumed to be disjoint; however, our assumption is in
accordance with the GraphQL specification and does not affect the provided semantics.

2.2. Worst-case Optimal Multi-way Join Algorithms

Worst-case optimal multi-way algorithms [26] have recently gained a lot of attention
(e.g., [3,27,28,29]) and have demonstrated high performance in evaluating graph pat-
tern queries [27,29,30]. Such algorithms satisfy the AGM bound [31] and their runtime
matches the worst-case size of the result of the input query [23,27]. Pair-wise join algo-
rithm carry out join operations on two join operands at a time. Instead, worst-case opti-
mal multi-way algorithms (e.g., Leapfrog Triejoin [32]) are recursive and evaluate input
queries on a per variable basis. This evaluation method does not store any intermediate
results and allows for solution mappings to be directly written to the result.

3. Evaluation of GraphQL Queries over RDF Graphs

In this section, we introduce the multi-way left-join algorithm that we developed for
the native execution of GraphQL queries over RDF graphs. Motivated by recent results
on the evaluation of basic graph pattern queries presented in [3,27], the proposed left-
join algorithm is inspired by worst-case optimal multi-way join algorithms and evaluates
queries on a per variable basis. However, unlike join operations, the reordering of left-
join operations is not allowed. Hence, we have to pay attention to the order in which the
variables of a query are evaluated. In addition, left-join operations might produce partial
solutions (i.e., solutions with null values in the context of GraphQL). To respect the or-
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der of operations during the evaluation of a query and to ensure that partial solutions will
not be discarded, we additionally introduce the operand dependency graph. Before intro-
ducing the operand dependency graph and the proposed multi-way left-join algorithm,
we define first the process of generating the query operands of GraphQL queries.

3.1. GraphQL Query Operands

In the case of SPARQL, there are multiple features of the language that generate query
operands, with the most common being the triple pattern. In the case of GraphQL, an
operand needs to be generated for each field, argument and inline fragment of a query.
Here, for simplicity, we use a notation that resembles SPARQL’s triple patterns and
present how to generate the operands of GraphQL queries. Note that we do not actu-
ally translate GraphQL queries to SPARQL queries. Potential implementations are free
to use any means available (e.g., indices) for generating these operands. For the genera-
tion of GraphQL query operands, we must also map the types and fields of the provided
GraphQL schema to RDF terms. Our implementation computes this mapping using a
GraphQL directive [25, Section 3.13]. In the following, we omit this mapping for brevity.

In a GraphQL query, we distinguish three types of fields: i) root fields, ii) inner
fields, and iii) leaf fields. The root field of a query is the starting point of the traversal. Its
corresponding operand should only contain the entities of the underlying RDF graph that
are instances of its type. The pattern 〈?var,rdf:type, typeS( f )〉 is used to extract these
instances, with ?var being a variable that will be assigned the extracted instances. Inner
and leaf fields represent edges between a source and a target vertex in the graph and their
operands are created using patterns of the form 〈?var1, f ,?var2〉. Ultimately, ?var1 will
be assigned the source vertices of the edge, whereas ?var2 will be assigned the target
vertices. In the case of inner and leaf fields, we need to also consider the type of the target
vertices. More specifically, in RDF, the objects of properties can vary in type, whereas,
in GraphQL, the target vertices of fields are of specific type. To restrict the type of target
vertices, an additional operand is generated using the pattern of root fields presented
above. In practice, this additional operand can be omitted, if the schema allows it (e.g.,
via a directive). Provided an expression f[α]{φ}, the operand of an argument-value
pair a = ( f ′,v) ∈ α is created by 〈?var, f ′,v〉. Last, the operand of an inline fragment
on t{φ}, whose sub-expression φ is executed only if the parent field is an instance of the
type t, is created by 〈?var,rdf:type, t〉. The operands of the aliased fields � : f[α]{φ}
and � : f[α] are generated using the patterns of f[α]{φ} and f[α], respectively.

Two query operands participate in a (left-)join operation, if they share a variable.
For assigning variables to operands, we take advantage of the hierarchical structure of
GraphQL. More specifically, the target vertices of a field and the source vertices of its
nested fields, share the same variable. The operands of inline fragments are also assigned
the variable of the target vertices of their parent fields. In the case of arguments, their
operands are assigned the variable that is already assigned to the operand of their field.
Example 3.1 demonstrates the operand generation process of GraphQL queries.

Example 3.1 Consider the queries of Example 2.2. The operands of φ1 are generated
by the patterns: 1) 〈?x,rdf:type,Person〉, 2) 〈?x,lname,"Doe"〉, 3) 〈?x,fname,?y〉,
and 4) 〈?x,email,?z〉 . Note that the operands of the root field and its argument share
the same variable. Consequently, vertices representing people whose last name is not
“Doe” will be discarded. The inner fields are associated with the root field through the
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variable ?x. Also note that the target vertices of the inner fields are assigned different
variables. The operands of φ2 are created in a similar manner and their correspond-
ing patterns are: 1) 〈?x,rdf:type,Company〉, 2) 〈?x,name,?y〉, 3) 〈?x,employees,?z〉,
4) 〈?z,rdf:type,Person〉, 5) 〈?z,lname,?w〉, and 6) 〈?z,id,?v〉. The inner fields name
and employees are associated with the root field companies through the variable ?x,
whereas the operands of the leaf fields id and lname are associated with the operand of
their parent field, namely employees, through ?z. Last, note the additional operand that
is generated for the field employees. Its goal is to discard vertices that are not of type
Person. We assume that type filtering is not required for scalar types for brevity.

3.2. Operand Dependency Graph

The operand dependency graph is inspired by pattern trees [33] and captures the depen-
dencies between the operands of a query. If an operand is not successfully resolved dur-
ing the query evaluation, its dependent operands should not be evaluated. For example,
provided a GraphQL query f[α]{φ}, the operands of φ should not be considered if the
operands of f[α] do not produce any results. However, if the operands of φ do not pro-
duce any results, the results generated by f[α] should not be discarded. The operand
dependency graph is formally defined as follows.

Definition 3.1 (Operand dependency graph) Let O be a list of query operands and Σ
an alphabet. Furthermore, let In = {i ∈ N | 1 ≤ i ≤ n}. An operand dependency graph
is a directed vertex-edge-labelled graph G = (V,E), where V = I|O| and E ⊆V ×Σ×V .
An operand v ∈V depends on operand u ∈V , if and only if ∃e ∈ E such that e = (u,σ ,v)
and σ ∈ Σ.

As per Definition 3.1, the vertices of an operand dependency graph correspond to the
operands of its respective query. The variables appearing in query operands are assigned
unique labels stemming from Σ and are used to label the vertices and edges of the de-
pendency graph. The vertices of the dependency graph are assigned the labels of their re-
spective operands’ variables. Two operands are connected via an edge only if they share
a variable. The label of an edge is determined by the label shared by its incident vertices.

For the construction of the operand dependency graph, we take advantage of the hier-
archical structure of GraphQL queries. Provided an expression f[α]{φ} (� : f[α]{φ}),
the operands of f[α] comprise a strong component in the dependency graph, as they all
depend on each other. This means that any vertex v of f[α] is reachable from any other
vertex u of f[α], with v �= u, provided that f[α] generates multiple operands. As the
operands of φ depend on the operands of f[α], the vertices of f[α] are not reachable
from the vertices of φ . In the case of on t{φ} expressions, the operands of φ depend on
the operand of t. This means that the vertex of t and the vertices of φ are connected with
edges, whose source is the vertex corresponding to t. In the case of φ1 . . .φk expressions,
there are not any edges between the vertices of any φi and φ j, with 1 ≤ i, j ≤ k and i �= j,
as the evaluation of φi does not affect the evaluation of φ j (Definition 2.4). Operands that
depend on each other participate in join operations, whereas unidirectional edges denote
left-join operations. Last, in the multi-way left-join algorithm, which is presented below,
we make use of the root node of the directed acyclic graph connecting the strongly con-
nected components of an operand dependency graph. Herein, we refer to this node as the
independent strong component of the dependency graph.
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Example 3.2 The operand dependency graphs corresponding to the GraphQL queries
Example 2.2 and their respective operands (Example 3.1) are as follows.

1

x
2

x 3

x,y

4
x,z

x

x

x

x
1

x 2

x,y

3
x,z

4
z

5

z,w

6
z,v

x

x

z

z

z

z

In the operand dependency graph of φ1 (left-hand side), there are not any edges connect-
ing the vertices of operands 3 and 4, since the evaluation of 3 does not affect the evalu-
ation of 4, and vice versa. The independent strong component of the dependency graph
consists of the operands 1 and 2. In the operand dependency graph of φ2 (right-hand
side), operands 3 and 4 depend on each other. Both operands are generated by the in-
ner field employees, with operand 4 being responsible for removing any RDF terms as-
signed to ?z that are not of type Person. In this case, the independent strong component
consists of a single vertex, namely the vertex corresponding to operand 1.

3.3. Multi-way Left-Join Algorithm

Here, we present our multi-way left-join algorithm (Algorithm 1) for the evaluation of
GraphQL queries over RDF graphs. The key characteristics of our approach are the
following. First, it evaluates join and left-join operations on a variable simultaneously.
Second, it uses the operand dependency graph to eliminate the transitively dependent
operands of an empty operand (i.e., an operand that is not successfully resolved), thus
avoiding unnecessary operations.

The function MWLJ (lines. 1–5) takes as input a GraphQL query and is responsible
for generating the operands of the query (line 2) and their dependency graph (line 3).
For simplicity, we assume throughout the algorithm that the operands are stored within
the vertices of the graph. This function is also responsible for initializing the solution
mapping, which stores the bindings of all variables of the query, as its domain is equal
to the set of labels appearing in the query’s operand dependency graph. Recall that each
variable is assigned a unique label (Section 3.2). After initializing the solution mapping,
MWLJ calls the recursive function MWLJ REC (line 5), which takes the operands depen-
dency graph G and the solution mapping X as inputs.

The function MWLJ REC (lines 6–22) is responsible for carrying out the join and left-
join operations and generating the solutions of the query. In case the provided depen-
dency graph is disconnected, MWLJ REC is called for each connected component of the
graph (lines 7–9). Disconnected dependency graphs correspond to φ1 . . .φk expressions,
as there are no dependencies between any φi and φ j, with 1 ≤ i, j ≤ k and i �= j (Section
3.2). If the provided graph is not strongly connected, there are left-join operations that
need to be carried out (lines 10–20). To respect the order of left-join operations, the al-
gorithm focuses on the set of labels (i.e., variables) U that are found in the independent
strong component of the dependency graph (line 11). For the GraphQL queries that we
consider in this work, the set U contains only a single label. This will not be the case
once we take GraphQL’s input object types [25, Section 3.10] into consideration.3 After

3Note that also the formal definitions of GraphQL in [22] do not consider input object types.
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Algorithm 1 Multi-way Left-join Algorithm
1: function MWLJ(Q) � Q: Input GraphQL query
2: O ← generate the operands of Q
3: G ← create the operand dependency graph of Q using O
4: X ← initialize solution mapping with domain equal to the set of labels appearing in G
5: MWLJ REC(G, X)
6: function MWLJ REC(G, X) � G: operand dependency graph, X : solution mapping
7: if G is disconnected then � Evaluation of φ1 . . .φk expressions
8: for all connected components Gi of G do � Each Gi corresponds to a φi, 1 ≤ i ≤ k
9: MWLJ REC(Gi, X)

10: else if G is not strongly connected then � Left-join operation
11: U ← the set of labels appearing in the independent strong component of G
12: x ← select a label from U
13: for all values χ of x do

14: resolve x in all operands using χ � Carries out join and left joins simultaneously
15: G′ ← prune vertices of empty operands and their transitively dependent vertices from G
16: if G′ is empty then

17: continue � All operands are pruned (unsuccessful join); continue with the next χ
18: update the value of x in X with χ � Join operations were successful
19: remove x from G′; remove vertices without any labels from G′
20: MWLJ REC(G′, X)
21: else � G is strongly connected (no left-join operations)
22: MWJ(G, X) � Carry out multi-way join (no more left joins after this point)

selecting a label x from U , the algorithm iterates over all possible values of x and carries
out all join and left-join operations on x (line 14). The algorithm proceeds by removing
any operands that were not successfully resolved along with their transitively dependent
operands, which can be found by traversing the dependency graph (line 15). If the result-
ing graph G′ ends up being empty, a join operation was not successful and the algorithm
continues with the next value of x (lines 16–17). If G′ is not empty, the solution mapping
X is updated with the current value of x, which is removed from G′ along with any fully
resolved operands, and the algorithm proceeds with the next recursive step (lines 18–20).
In case the provided graph G is strongly connected, the algorithm proceeds with a multi-
way join algorithm, as there are no left-join operations left to be carried out. The active
solution mapping X will be ultimately projected once the remaining join operations are
carried out by the multi-way join algorithm.

Example 3.3 Consider the query φ1 of Example 2.2. Provided the example RDF graph

<p1> rdf:type <Person>; <lname> "Doe"; <fname> "Jon"; <email> "e1".

<p2> rdf:type <Person>; <lname> "Doe"; <fname> "Jan".

the proposed algorithm will produce three solutions: {x:p1, y:"Jon"}, {x:p1,
z:"e1"}, and {x:p2, y:"Jan"}. The algorithm selects first the label corresponding to
the variable x, which is assigned the identifiers of people in the graph. For the value p1
of x, the algorithm generates two solutions. The first one provides the first name (fname)
of p1, which is assigned to y, whereas the second one provides its email, which is as-
signed to z. For the value p2, the algorithm generates only one solution, as p2 does not
have an email in the example graph. Note that after selecting x and removing it from the
operand dependency graph, the resulting dependency graph is disconnected. Variables
that do not appear in a solution mapping are unbound in that particular mapping.
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Regarding the enumeration of GraphQL queries, in [22], the authors study the enu-
meration problem for GraphQL queries that are non-redundant and in ground-typed nor-
mal form. Recall that such queries can be computed in time linear to the size of their
response (Section 2.1). Each solution mapping generated by our algorithm captures a
unique path of the response corresponding to the provided query. As our left-join algo-
rithm computes a solution mapping entirely, we are able to directly construct the path
that corresponds to a particular solution mapping, once it is evaluated. In addition, due
to the recursive nature of our algorithm, the solution mappings of the sub-trees of a par-
ticular node of a GraphQL response share common values (Example 3.3). Hence, we are
able to avoid visiting the nodes of a response multiple times.

3.4. Implementation

We have implemented the proposed algorithm within the tensor-based triple store Tentris
[3]. Tentris achieves state-of-the-art performance in the evaluation of basic graph pat-
terns, which are evaluated by a worst-case optimal multi-way join algorithm [3,34]. Our
implementation, namely TentrisGQL, uses Tentris’ multi-way join algorithm (Algorithm
1, line 22), and tensor slicing operations to generate the operands of GraphQL queries.

To bridge the gap between GraphQL schemata and RDF graphs, we follow Neo4j’s
example4 and define several directives in our implementation. As per the GraphQL
specification, “directives can be used to describe additional information for types,
fields, fragments and operations” [25, Section 3.13]. We mentioned in Section 3.1 that
GraphQL types and fields need to be mapped to RDF terms. To this end, we de-
fine in our implementation the directive @uri. For example, the type definition type

Person @uri(value: "http://www.exmpl.org/Person") maps the type Person

to the RDF term http://www.exmpl.org/Person. As the inverse of a property is not
always available in RDF graphs, we also define the field directive @inverse, which de-
notes that the inverse direction of a field’s property should be used. Last, we introduce
the field directive @filter, which denotes that the results of a particular field should be
filtered using that field’s type. This directive should be used on fields that are mapped to
properties having ranges consisting of multiple RDF classes (Section 3.1).

4. Experimental Results

In this section, we present the performance evaluation of TentrisGQL, which we eval-
uated using the Linköping GraphQL Benchmark (LinGBM) [24]. LinGBM is a syn-
thetic benchmark generator that provides a GraphQL schema that captures the structure
of the generated datasets, and a set of 16 GraphQL query templates. To the best of our
knowledge, LinGBM is currently the only publicly available benchmark for evaluating
GraphQL services. The experiments that are presented below were carried out on a De-
bian 10 server with an AMD EPYC 7742 64-Core Processor, 1TB RAM, and two 3 TB
NVMe SSDs in RAID 0. All artifacts (e.g., datasets, GraphQL schemata, queries, and
system configurations) are available online.5

4https://github.com/neo4j-graphql/neo4j-graphql-js/blob/master/docs/

graphql-schema-directives.md
5https://github.com/dice-group/graphql-benchmark

N. Karalis et al. / Native Execution of GraphQL Queries over RDF Graphs Using Multi-Way Joins86

https://github.com/neo4j-graphql/neo4j-graphql-js/blob/master/docs/graphql-schema-directives.md
https://github.com/neo4j-graphql/neo4j-graphql-js/blob/master/docs/graphql-schema-directives.md
https://github.com/dice-group/graphql-benchmark


4.1. Systems

As baseline for our experiments, we used Neo4j Community Edition 5.5.0 [11]. We se-
lected Neo4j because it is a widely used graph database and it provides its own tools
for processing GraphQL queries. In our experiments, we evaluated Neo4j in two differ-
ent modes. In the first mode (Neo4jC), Neo4j was provided with Cypher queries instead
of GraphQL queries. The GraphQL queries used in our experiments (Section 4.2) were
translated to Cypher queries using a library provided by Neo4j6. The purpose of this
mode was to compare the query evaluation performance of TentrisGQL against that of
Neo4j, as no result rewriting takes place in this mode of Neo4j. To find out the over-
head introduced by the process of result rewriting, we used a second mode, namely
Neo4jGQL. Neo4jGQL includes an external application that is connected to Neo4j and
is responsible for translating GraphQL queries to Cypher queries and rewriting query re-
sults to GraphQL responses.7 Recall that TentrisGQL incrementally constructs GraphQL
responses. For the evaluation, we used Neo4j’s recommended memory settings8 and built
the appropriate search indices. More specifically, regarding the memory settings, we al-
located 31GB of memory to the Java virtual machine (JVM) and 957GB for caching pur-
poses. In our experiments, we also evaluated TentrisGQLBase, a version of TentrisGQL
that treats fields of type ID (i.e., fields that capture IRIs of RDF terms) as strings. As a re-
sult, TentrisGQLBase needs to carry out left joins and joins to evaluate such fields when
they appear as leaf fields or arguments in a query, respectively. In contrast, TentrisGQL
accesses the IRIs of RDF terms directly. TentrisGQLBase provides us with insights on
the impact that the evaluation of leaf fields has on the performance of our service.

4.2. Datasets, Query Templates, and Schema

LinGBM’s dataset generator relies on the dataset generator of LUBM [35] and allows for
the generation of datasets of varying sizes via the use of a scale factor. To evaluate the
performance of our approach on RDF graphs of different sizes, we generated three graphs
(Table 1), namely LinGBM100, LinGBM500, and LinGBM1000. For our experiments,
we modified LinGBM’s dataset generator to include the classes corresponding to the
interface types of the schema, as both systems expect them to be stated in the input data.

As previously mentioned, LinGBM also provides a set of query templates. Their de-
sign follows a choke-point methodology [24, Section 3.3]; each choke-point focuses on
a particular workload or operation. In this work, we are interested in join and left-join
operations. Hence, we focus on the choke-points Attribute Retrieval (CP1) and Relation-
ship Traversal (CP2) of LinGBM. There are only six query templates (QT1-QT6) that
focus exclusively on CP1 and CP2. To include additional queries in our evaluation, we
modified the query templates QT7-QT14 by removing those features that are not related
to CP1 and CP2 (e.g., ordering, filtering, and pagination). In addition, we had to remove
input objects from the query templates QT11-QT14, as they are currently not supported
by our implementation. Ultimately, in our experiments, we used 11 query templates and
two non-parameterized queries (Table 2).9

6https://github.com/neo4j-graphql/neo4j-graphql-js
7We followed the example used in https://github.com/neo4j-graphql/neo4j-graphql-js.
8https://neo4j.com/docs/operations-manual/5/tools/neo4j-admin/neo4j-admin-memrec
9After our modifications, QT8 and QT11 do not have any parameters, and QT13 and QT14 are identical.
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Scale Factor #Triples
#Distinct
Subjects

#Distinct
Predicates

#Distinct
Objects

LinGBM100 100 16M 2M 20 3M
LinGBM500 500 79M 10M 20 18M

LinGBM1000 1000 160M 21M 20 37M

Table 1. The datasets used in the experiments.

QT D aRS-100 aRS-500 aRS-1000 QT D aRS-100 aRS-500 aRS-1000

1 3 34K 170K 338K 8 1 4M 20M 40M
2 3 21K 105K 200K 9 4 279K 1.3M 2.7M
3 4 243 244 245 10 1 6.3M 31M 63M
4 5 81K 425K 864K 11 2 3.7M 18M 37M
5 7 12M 311M 1.2G 12 3 79K 397K 785K
6 4 19K 94K 192K 13 3 73K 373K 738K
7 3 20K 101K 202K

Table 2. The depth (D) and the average size of the GraphQL response (aRS-SF) in bytes of each GraphQL
query template (QT) for each scale factor (SF). QT8 and QT11 are not parameterized.

The GraphQL schema provided by LinGBM is meant to be used by GraphQL ser-
vices that do not generate GraphQL schemata automatically (e.g., relational schema to
GraphQL schema). For our experiments, we modified the provided schema by removing
those types and features that are not required by the query templates (e.g., input types and
enumeration types) used in the experiments. For TentrisGQL, we extended the schema
with the directives of our implementation (Section 3.4). In a similar manner, we extended
the schema used for Neo4j with Neo4j’s respective directives.

4.3. Benchmark Configurations and Execution

Our GraphQL service was evaluated on two different benchmark configurations. The
purpose of the first configuration was to evaluate the performance of our service on
each query template. For each template, we created a stress test consisting of ten
query instances per template (110 queries) We also created a stress test for each non-
parameterized query (112 queries in total). The stress tests were executed 5 consecutive
times and independently from each other, thus ensuring that the query instances were
executed the same number of times. With the second configuration, we measured the per-
formance of our system when queried by multiple clients. This configuration consisted
of one stress test, which included one query instance from each template and the two
non-parameterized queries (i.e., 13 queries). During the execution of the second config-
uration, it was important that there were multiple clients issuing queries at all times. For
this reason, we configured the clients to issue queries concurrently for one hour [3,36].
In both configurations, the execution of each stress test is preceded by a warm-up run, in
which the queries of the corresponding stress test are executed once. This allowed Neo4j
to load and cache its data structures in the main memory.

The stress tests of both benchmark configurations were executed over HTTP using
the benchmark execution framework IGUANA in version 3.3.0 [36]. As in [3], we set
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Figure 1. Performance of the systems in the first configuration w.r.t. their pAvgQPS. The black lines denote
the values reported in the warmup run.

Figure 2. Performance of the systems in the first configuration w.r.t. their QPS.

Figure 3. Scalability of the systems in the second configuration w.r.t. their pAvgQPS.

Neo4jC Neo4jGQL TentrisGQLBase TentrisGQL

LinGBM100 230.32 91.51 366.27 524.90
LinGBM500 72.13 33.72 164.23 229.90

LinGBM1000 43.99 20.11 124.59 169.79

Table 3. Overhead of result rewriting in Neo4jGQL (pAvgQPS).

the timeout across all benchmarks to three minutes and measured the performance of our
implementation using the number of queries executed per second (QPS) and the penal-
ized average QPS (pAvgQPS); the penalty for failed queries (e.g., timed out queries) was
set to three minutes. Last, we compared the results generated by all systems to ensure
that they return the same results across all queries.
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4.4. Results

The results of the first benchmark configuration are presented in Figures 1 and 2. Fig-
ure 1 shows that both TentrisGQL and TentrisGQLBase outperform Neo4jC across all
query templates in all datasets, with TentrisGQL achieving 1.5 (QT2 and QT13) to 7.4
(QT3) times higher pAvgQPS than Neo4jC in the largest dataset, namely LinGBM1000.
In addition, both TentrisGQL and TentrisGQLBase achieve higher median QPS than
Neo4jC in all datasets (Figure 2). Figure 3 summarizes the results reported in the second
benchmark configuration. We removed the query instance corresponding to QT5 from
the second configuration’s query list because Neo4j was running out of JVM memory
when this query was issued by multiple clients. TentrisGQL and TentrisGQLBase did
not face any memory-related issues. Figure 3 shows that Neo4jC scales better than Ten-
trisGQL and TentrisGQLBase when queried by 4 and 8 concurrent clients in the smallest
dataset (i.e., LinGBM100). However, TentrisGQL and TentrisGQLBase achieve higher
pAvgQPS than Neo4jC in all cases and in particular, TentrisGQL achieves 3.5 higher
pAvgQPS in the case of 16 clients in LinGBM1000. To measure the overhead introduced
by the rewriting of Neo4j’s results to GraphQL responses, we used the second bench-
mark configuration with one concurrent user. Table 3 shows that rewriting process leads
to TentrisGQL achieving up to 8.4 times higher pAvgQPS than Neo4jGQL

4.5. Discussion

The performance of the systems did not vary significantly across all datasets. In partic-
ular, they were not significantly affected by the increasing size of the datasets. The sys-
tems’ performance was mostly affected by the average result size (aRS) of the query tem-
plates (Table 2). In particular, all systems achieved their highest and lowest pAvgQPS in
all datasets in QT3 and QT5, respectively. QT3 has the lowest aRS, whereas QT5 has the
highest. The depth of the query templates also affects the systems’ performance. For ex-
ample, the pAvgQPS of the systems in QT6 is lower than in QT7, even though the latter
has a higher aRS. Queries with higher values of depth require more left-join operations
in TentrisGQL and longer path traversals in Neo4j.

Another factor that impacts the performance of our GraphQL service is the size of
the operands corresponding to leaf fields, which are evaluated via left-join operations.
This observation is grounded in the performance of TentrisGQLBase (Figure 1), which is
always equivalent to, or worse than, TentrisGQL’s performance. Recall that TentrisGQL-
Base, unlike TentrisGQL, evaluates leaf fields and arguments of type ID via left-join and
join operations, respectively. Neo4j employs the property graph model, which allows it
to represent leaf fields as node properties. Hence, for evaluating leaf fields, Neo4j does
not iterate over all of a particular property key’s properties. Despite these additional op-
erations, both TentrisGQL and TentrisGQLBase outperform Neo4j. This suggests that
our algorithm does not introduce much overhead to the computations.

The results of Table 3 are in line with the results reported in [18] and demon-
strate the importance of GraphQL services being able to directly construct GraphQL re-
sponses. Regarding the memory usage, we measured the memory used by the systems in
LinGBM1000 when queried by 16 concurrent clients using pmap10. The highest Resident
Set Size (RSS) reported by TentrisGQL and Neo4jC was 41GB and 44GB, respectively.

10https://linux.die.net/man/1/pmap
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5. Related Work

Recently, several graph storage solutions have made efforts to allow users to access their
data via GraphQL. Dgraph [16] is a distributed graph database that natively supports
GraphQL. It also provides its own query language, namely DQL. In Dgraph, GraphQL
operations are translated to DQL operations. However, response objects are constructed
following the GraphQL specification. Hence, a rewriting of the results is not required.
We did not include Dgraph in our experiments for two reasons. First, Dgraph does not
fully support RDF, as it is not able to handle URIs. Additionally, Dgraph’s GraphQL
service expects predicates to be prefixed with their subject’s type. Consequently, existing
RDF graphs need to be substantially modified to be stored in a Dgraph instance. Sec-
ond, Dgraph does not provide a bulk loader for its GraphQL service; hence it is not able
to load large knowledge graphs efficiently.11 In addition to the translation tools used in
Section 4, Neo4j provides a library that serves as a middleware between applications and
database instances. This library12 is responsible for the translation process of GraphQL
queries to Cypher queries. Regarding triple stores, Stardog [37] and the commercial edi-
tion of GraphDB [9] provide GraphQL support by translating GraphQL to SPARQL.
Virtuoso [8] introduced a GraphQL plugin13 that allows its users to query RDF graphs
via GraphQL. To bridge the gap between GraphQL and SPARQL, this plugin relies on
OWL ontologies to map the types and fields of GraphQL schemata to RDF terms. We
did not include Virtuoso in our experiments as it does not perform type filtering in inner
fields, which leads to queries returning incorrect results.14

6. Conclusion and Future Work

We presented an approach for the native evaluation of GraphQL queries over RDF
graphs. As GraphQL queries require left-join operations, we focused on the development
of a novel multi-way left-join algorithm that is inspired by worst-case optimal multi-way
join algorithms. Similarly to worst-case optimal multi-way join algorithms, the proposed
left-join algorithm recursively evaluates queries on a per variable basis, which allows for
the incremental enumeration of GraphQL queries. By implementing our approach within
the tensor-based triple store Tentris, we provide the first publicly available triple store
that treats GraphQL as a first-class citizen. The performance evaluation of our imple-
mentation demonstrates the efficiency of the left-join algorithm, as our implementation
outperforms a state-of-the-art graph database, namely Neo4j.

Our implementation currently supports the features of the language that are re-
quired by its formal semantics (Equation 1). Our future work will focus on extending
our GraphQL service with all features from the specification. To the best of our knowl-
edge, there have not been any works that focus on evaluating SPARQL queries requiring
left-join operations on a variable basis. To this end, we plan to use our approach for the
evaluation of such SPARQL queries (i.e., queries containing optional graph patterns).

11https://discuss.dgraph.io/t/graphql-vs-dql-dgraph-blog/14311; see paragraph ”When
not to use GraphQL”.

12https://neo4j.com/docs/graphql-manual/current/
13https://community.openlinksw.com/t/introducing-native-graphql-support-in-virtuoso/

3378
14https://github.com/openlink/virtuoso-opensource/issues/1115
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