
Plow: A Novel Approach to Interlinking
Modular Ontologies Based on Software

Package Management

Maximilian GOISSER, Daniel FIEBIG, Sebastian WOHLRAPP and Georg REHM
Field 33 GmbH, Berlin, Germany – firstname@field33.com

Abstract. Ontology development offers many challenges, with some of the most
prominent being modularization and evolution of ontologies over time. Based
on lessons learned from popular programming language package managers, we
present a novel approach to package management of OWL ontologies. Most
prominently we integrate a dependency resolution algorithm based on the popular
SemVer versioning scheme with tooling support for dependency locking, which al-
lows for decoupling publication and consumption of ontologies, reducing the need
for coordination in ontology evolution. To complete our unified approach, we ad-
ditionally provide an integrated registry, which serves as a domain-agnostic repos-
itory for ontologies (https://registry.field33.com).
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1. Introduction and Motivation

More than a decade ago, the essay “Why Software is eating the world” [1] succinctly
outlined how software is increasingly making its way into our everyday lives and how
it is even being picked up in the value chains of primarily ‘analogue’ companies with
business models rooted in the production of physical goods. Since 2011, this trend has
continued with software growing in amount and complexity, which is why the field of
software engineering has seen an increase in professionalization. With software being
deeply entangled with business processes and, consequently, with business success, the
requirements to reduce the risk of software projects have also grown. At the same time,
threats to software production supply chains have increased, with malicious actors tar-
geting them due to their high-value nature, using, for example, ransomware, as well as
an increased reliance on third parties. To fulfill some of those requirements, new struc-
tured processes and tooling to support these processes have been established, primarily
addressing the reuse of software by independent parties using programming language
package management.

In the same time frame, industry adoption of ontologies and other semantic tech-
nologies has not seen the same level of growth, nor has it seen the same advances as
other fields in software engineering in terms of robust tooling. Actual production use of
ontologies is still largely relegated to a few domains in which they have demonstrated a
track record to justify developing bespoke tooling, with little success in other areas. With
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recent large-scale initiatives like Industrie 4.0 [2] or Gaia-X [3], interest in providing
ontologies across and also as a basis for a wide variety of domains has been reignited.

When it comes to ontology engineering, the current model for package management
is based on dependencies between ontology packages that are modelled solely using
URIs, and package updates are handled via manual processes. This current state-of-the-
art in ontology management is no longer adequate to fulfil the needs of modern software
engineering workflows because the inclusion of ontologies in larger software projects
can pose a significant risk to the project’s success.

In this article, we present our approach, Plow, as a solution to bring well-established
practices and tooling from programming language package management to ontology
management while adapting it to the unique characteristics of knowledge representation
through ontologies. By closing the gap between ontology engineering on the one hand
and software engineering on the other, we are able to provide a robust foundation that
projects relying on ontologies can build on and benefit from cross-fertilisation between
the two fields moving forward.

The remainder of this article is structured as follows. First, Section 2 describes re-
lated work, especially with regard to modular ontologies, OWL, ontology repositories
and programming language package management. Section 3 presents our overall ap-
proach, including the broad requirements we have. Section 4 describes, in detail, the
implementation of Plow. Afterwards we explain the use of the tool (Section 5) and its
limitations (Section 6). The article finishes with several conclusions and future work.

2. Related Work

2.1. Web Ontology Language (OWL)

The Web Ontology Language (OWL) [4] is one of the most commonly used languages
for knowledge representation. Many ontology engineering tools support OWL and use
the concept of an IRI-identified ontology as the fundamental unit of modularization.
OWL2 [5] introduces a “version IRI” to identify a single version of an ontology.

To specify dependency relations between ontologies, the OWL specification estab-
lishes the concept of “imports” together with a number of annotation properties (e. g.,
owl:imports). Additional annotation properties allow for specifying the version of
an ontology as well as specifying version order, compatibility and the incompatibility
between different versions of an ontology. While these features provide a framework
for expressing basic dependency relations, the specification intentionally leaves the se-
mantics for the annotations under-specified, making them unfit as a source of truth for a
fully-featured ontology management system on their own.

One area where the provided primitives are lacking is the ability to specify abstract
dependency relationships. One can either express the relationship on any version of an
ontology via an Ontology IRI or express the relationship on a single version of an ontol-
ogy via an Ontology Version IRI. This results in a situation where one has to choose be-
tween under-specifying the compatibility to specific versions of the dependency and risk
accidental upgrades or over-specifying the dependency by providing an exact version
and making upgrading between versions a manual process.

OWL2 also leaves open how an ontology file should be retrieved, even though it
does outline a loading mechanism. This can lead to a multitude of problems when trying
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to retrieve the ontology document backing an IRI. There is no guarantee that any two
requests to retrieve the ontology file by URL result in the same document due to a lack of
mechanisms for testing its integrity, like, e. g., Subresource Integrity [6]. Since there is no
guarantee that the machine serving the URL will be continuously online, a server going
offline can result in an unretrievable ontology and an incomplete set of dependencies. A
growing amount of dependencies from different sources means that the reliability of the
retrieval process is subject to an increasing number of points of failure.

As a prominent standard, OWL forms the basis for ontology formalization in Plow,
while supplementing its dependency management primitives with ones suitable to re-
solve the outlined shortcomings.

2.2. Ontology Repositories

Ontology repositories help improve the discoverability of ontologies. They vary in so-
phistication, with some consisting of a simple static HTML page linking to a list of
Ontology IRIs and more sophisticated ones including fully interactive web applications
through which users can publish ontologies in a self-service manner. A recent overview
of related work in this area is provided by [7].

As Plow contains a registry component that most closely resembles existing self-
publishing repositories like BioPortal, we survey the existing solutions in that space.
While ontology repositories like DBpedia Archivo do not fit our model as closely, they
are also of interest as inspiration on how to keep compatibility with the existing ecosys-
tem and how the registry could be provided with an initial set of ontologies.

2.2.1. Self-Publishing Repositories

BioPortal [8] is a repository of approx. 1000 ontologies from the biomedical domain. It
features a web UI for searching and discovering ontologies, through which it exposes
many of the core metadata and statistics that can be of interest when evaluating an ontol-
ogy for its quality and an entity explorer that can be used to explore the contents of an
ontology. BioPortal incorporates access control, which can be used to restrict the visibil-
ity of an uploaded ontology to a certain set of users, and it exposes a REST API, which
can be used with an API key for programmatic ontology submission and retrieval.

Ontohub [9] is a self-service ontology repository providing distributed version-
control based on Git, following the standards of the Open Ontology Repository Initiative
(OOR). It uses the Distributed Ontology, Modeling and Specification Language (DOL)
to enable uniform support for all kinds of formal knowledge representation languages.

2.2.2. Harvesting Ontology Repositories: DBpedia Archivo

One notable recently added ontology repository is DBpedia Archivo [7]. Archivo is a
repository of ontologies based upon discovery via existing ontology repositories, as well
as inspecting all previously discovered ontologies for imports. It continuously crawls
all known ontologies and creates new archival snapshots when a change is detected. As
an additional source of ontologies, new URLs can be submitted for harvesting, which
will be added to the repository for continuous checking upon a successful initial crawl.
One unique feature is Archivo’s support for Semantic Versioning (SemVer) [10]. As
the original ontologies do not provide SemVer versions, Archivo compares the changes
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between the new snapshot and a previous one. Based on the observed changes, it tries
to derive an appropriate version through a set of rules that mimic the SemVer rules and
provides that version as a semantic versioning “overlay”.

2.3. Programming Language Package Management

Plow’s dependency management is based on recent advances in tools for dependency
management in programming languages. These vary greatly in sophistication and size of
ecosystem. We take a look at the most recent and prominent ones, to identify the core
mechanics that Plow can utilize to support a rapidly evolving ecosystem of ontologies.

2.3.1. NPM and other Package Managers

In the JavaScript/Node.js ecosystem, the Node Package Manager (npm) project provides
CLI package management tooling, as well as a public repository of npm packages [11].
With almost 2 million published packages [12], it has also been the subject of research
for open source software development methodologies. In terms of functionality, it reads
a set of abstract dependency requirements in the form of SemVer version ranges from
a manifest file (package.json), runs its dependency resolution algorithm and writes
the resulting set of package versions into a Lockfile (package-lock.json).

Many recent programming language communities have recognized the importance
of establishing package management tooling (as well as an integrated registry) early in
the lifetime of the language ecosystem. By providing integrated tooling usually consist-
ing of a CLI interface for package consumption and publication, a centrally hosted self-
service package registry with a REST API and web UI to allow for package discovery,
all core needs for package management are met. Since some features can involve com-
ponents of the package management solution, having a common party maintain those
components together can greatly simplify the evolution of the package management.

2.3.2. OntoMaven

OntoMaven [13] is a tool for managing transitive dependencies of modular ontologies
based on the build automation tool Apache Maven [14] and its accompanying reposi-
tory system. In addition to resolving transitive ontology dependencies and downloading
a copy for local use, OntoMaven also includes functionality to create an OASIS XML-
Catalog file, in which the local copies of external URIs are referenced. This file can be
read by Protégé and other tools to allow them to load an ontology by reading it from disk
instead of trying to retrieve the ontology file via HTTP. As Maven is traditionally used
in software development utilizing Java (and other JVM-based languages), OntoMaven is
well suited for software engineers with prior experience in that area. OntoMaven (like
Maven) is only available via a command-line interface, which can make it inaccessi-
ble to ontology engineers who are used to GUI-based workflows and have little to no
experience with command-line interfaces.

OntoMaven builds on top of Maven repositories, for which multiple commercial
hosting offerings exist, which should provide low operating complexity when running
an OntoMaven repository. In practice, the lack of an official repository to be used when
starting a new ontology development project can negatively impact the solution’s adop-
tion due to the necessary effort of having to set up a repository before publishing an
ontology.
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3. General Approach

3.1. Simplifying Ontology Reuse

While ontology reuse is a well-established concept in general, the concrete reuse of on-
tologies can be challenging [15, 16]. Current primitives are not sufficient to support and
automate the maintenance of ontologies that depend on a large number of other ontolo-
gies. By providing a framework that simplifies the inclusion and maintenance of external
dependencies, the effort required to maintain an individual ontology can be reduced. This
approach would finally make it possible to maintain a set of smaller, modular ontolo-
gies where previously, one single bigger ontology would have been used – out of sheer
necessity – to reduce the overhead of manual maintenance processes. The implementa-
tion of tooling that additionally can assist in avoiding common pitfalls of ontology reuse
and that streamlines the publication process can lower the barrier for enabling domain
experts to provide their formalized knowledge to third-parties.

In Plow, we reduce the effort required for maintenance and consumption of ontology
packages by specifying dependencies in abstract terms via SemVer ranges, which can
automatically be resolved and updated through an automated version resolution mech-
anism. By providing this mechanism to end-users through a CLI and a GUI, we can
cover a wide spectrum of use cases from deep integration into automatic software de-
livery pipelines facilitated by developers to the development of ontologies by ontology
engineers with little or no software engineering experience.

3.2. Industry-Readiness in Consumption and Publication of Ontologies

Current solutions for building and consuming ontologies do not offer the same level of
sophistication as their programming language counterparts, hindering the adoption of
ontology-based systems in industry. Given that in many scenarios, ontology contents are
being interpreted to guide the dynamic execution of software systems or display data to
end-users, they can act as a potential delivery method for malware.

The careless inclusion of dependencies maintained by third-parties can allow for the
delivery of malicious payloads without the application’s maintainer being aware of this.
Thus, package managers which serve as the central component for managing external de-
pendencies, have become crucial for ensuring safety with regard to attacks against soft-
ware supply chains. Furthermore, to ensure compliance with intellectual property rights,
package managers have adopted functionalities to allow for the automated analysis of
the licenses of all transitive dependencies of a project.

In Plow, we aim to meet these requirements by providing a dependency resolution
mechanism that, at its core, is designed to be reproducible via the production of Lock-
files. Furthermore, in many aspects, Plow’s design is hardened against cyber-security
threats. This includes cryptographically secure integrity hashes that prevent undetectable
tampering with package versions during their retrieval, which allows for delivery via
third-party content delivery networks as well as using them for offline caching solutions.
In addition, we integrate security features like multi-factor authentication into the service
registry to prevent account takeover attacks. The availability of a Lockfile that contains
the fully resolved dependency tree also allows for deeper transparency into the ontology
supply chain, enabling automatic license conformance checks via SPDX 2.1 license ex-
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pressions [17], which are enforced as required metadata on submission to the registry
service. As ontologies created in a business context may be considered valuable intel-
lectual property, the registry provides the option to publish private packages with access
control, which by default are only available to the package maintainer.

3.3. Domain and Programming Language Agnosticism

For some of our requirements (see above), partial solutions exist in some domain-specific
ontology building ecosystems, which have invested in tooling to support these require-
ments. As these tools are often tailored to the needs of the specific domains, they do
not generalize well to other domains. Similarly, in the past, implementation efforts were
mostly focused on the JVM [18] and Python [19] programming language ecosystems.

Using our approach for building a package management solution, that at its core
is agnostic to domains and programming languages, the upfront cost to establish ontol-
ogy building and publication in new domains and programming languages can be sig-
nificantly reduced. Plow supports making ontologies of different domains available on a
common platform, building ontologies that span multiple domains and simplifying the
reuse of established ontologies of each of the respective domains, increasing the utility
of domain-specific ontologies through reuse.

3.4. Compatibility with Existing Ecosystem

As a lot of valuable work has gone into the development of ontologies in the past, a new
system should try to be compatible with existing ecosystems. In Plow, we build upon
OWL and provide a solution existing ontology maintainers can migrate towards. Plow is
also designed in a way that makes it easy to integrate into existing workflows.

One aspect where Plow can break compatibility with an existing ecosystem is re-
garding its stance to the HTTP retrieval aspect of the Linked Data principles. In Plow,
ontologies are not retrieved via HTTP from their URIs (from potentially different par-
ties) – a property that in practice many ontology maintainers struggle to uphold. Instead
it relies on a single known source of truth with built-in measures for reliability.

4. Implementation

The implementation of Plow has been inspired by Cargo [20], the official package man-
ager for the Rust programming language, and its corresponding official registry crates.io
[21]. To the best of our knowledge, technical descriptions of these tools are not avail-
able, so we attempt to outline the major architectural decisions that we adopted from
their system alongside our novel additions. We deviate from Cargo’s architecture with
regard to our implementation’s support for private ontology packages, which enables a
mixed public-private registry service. Our implementation of dependency resolution is
also different due to the nature of the preexisting ontology ecosystem.

4.1. Ontology Package

In its current implementation, an ontology package is equivalent to a Turtle-serialized
[22] file containing a single OWL ontology. To match the agricultural-inspired naming
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of Plow, an ontology package is nicknamed a field. All metadata utilized for package
management is added as annotations to the owl:Ontology entity in the ontology, with
the annotation properties (Table 1) defined in our ontology1 with the prefix registry.

Annotation Property Purpose Repeatable

:ontologyFormatVersion Version identifier for the ontology format itself No
:packageName Identifier for the ontology package No
:packageVersion SemVer version for the ontology package version No
:dependency Name and SemVer version range of a package this pack-

age depends on
Yes

:canonicalPrefix Canonical prefix to be used in place of the ontology IRI
when importing this ontology in another ontology

No

:licenseSPDX SPDX 2.1 license expression No
:license Free-form field for non-standard license information Yes
:author Name and contact information for a author of the pack-

age
Yes

:homepage URL for a homepage of the ontology Yes
:documentation URL for a page with documentation for the ontology Yes
:repository URL for a VCS repository where the ontology is main-

tained
Yes

:category Category according to the categorization system defined
by the Registry

Yes

:keyword Self-defined keyword to be used in discovery mecha-
nisms of the Registry

Yes

Table 1. Overview of annotation properties defined in the registry ontology

Packages are identified through a combination of a namespace (prefixed by @) and a
package name, e. g., the package infrastructure in the namespace software can
be referred to by the identifier @software/infrastructure. Namespaces allow
the grouping of packages that have a common set of authors allowed to publish packages
belonging to that namespace. This property should be ensured by the registry service.
Organizing packages in namespaces reduces the attack surface for “typosquatting” [23],
where a malicious party publishes malicious code under a package name that is a com-
mon misspelling of a popular package, one of the most common supply chain attacks on
package managers.

Ontology Package Version and Dependencies

To identify a specific version of a package, we use the SemVer [10] versioning scheme.
Each version is assigned a version number that is unique across all versions of the same
ontology package inside a registry (a combination of package name and version number).
In SemVer, a version number follows the MAJOR.MINOR.PATCH format, where the
version number sections are incremented for a newly published version based on the
level of compatibility of the changes made to the package since the previously published
version. This level of compatibility is derived from categorizing changes to the public
API of the package to be one of “backwards compatible bugfixes” (increase in PATCH

1http://field33.com/ontologies/REGISTRY/
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version), “backwards compatible addition of new features” (increase in MINOR version),
and “breaking changes” (increase in MAJOR version).

By encoding information about the “compatibility” in the version number, this en-
ables a package consumer to answer the question of whether it is possible to upgrade
between package versions by looking only at the package version, without a need to in-
spect the whole set of changes that have been applied between the package versions. This
simplification allows for a more streamlined approach to upgrading the versions of the
packages one depends on, which was previously a labour-intensive manual process.

Programming language package managers have also been exploiting this property
by using SemVer version ranges for specifying the acceptable set of versions for a de-
pendency. As an example, by specifying a dependency requirement for the package
@foo/bar with the version range >=1.2.3, <2.0.0, we can tell that the package
with the version 1.7.1 falls within the specified range and satisfies the dependency re-
quirement. Conversely, we can also tell that the version 1.1.0 does not satisfy the re-
quirement, as according to the semantics of the MINOR position in the SemVer version
number, it lacks new functionality introduced in version 1.2.0.

4.2. Registry Service

A Registry is an abstract entity consisting of an Index and an Artifact Store. This interface
can be implemented with different characteristics, fitting different use cases, e. g., for
non-collaborative development purposes, a registry can be constructed where Index and
Artifact Store exist in their entirety on disk on a single machine, while for collaborative
development on the same Registry, the bulk of the Index and Artifact Store contents
are stored on a remote server, and only the required resources are copied to the local
machine. In particular, in our implementation, we developed a Registry Service, which
runs as a remote HTTP server, to serve the requests from a GUI or CLI client. In addition
to supporting the core registry functionality required for package dependency resolution,
it also provides a Web UI for searching and discovering published ontology packages.

4.2.1. Index

The Index contains the metadata for all published packages and their versions that were
published to the Registry (Listing 1 shows an example). By restricting itself to contain
only the metadata required for dependency resolution, the total size of the Index stays
small enough to fit on a local development machine easily. By storing the Index in a Git
repository, we can leverage the existing synchronization mechanism of Git to efficiently
synchronize the Index between machines. To support private packages, a separate Index
served via authenticated REST endpoints of the Registry Service is employed. The Index
records a cryptographic checksum for a package version under the cksum key.

Listing 1: Example of an Index metadata file for a package with a single published ver-
sion and a single dependency

{
"versions": [
{
"name": "@test/package1",
"version": "0.1.0",
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"cksum": "ef7118...5704f04",
"ontology_iri": "http://example.com/@test/package1/",
"deps": [
{
"name": "@test/package2",
"req": ">=0.1.0"

}
]

}
]

}

4.2.2. Artifact Store

The Artifact Store, which complements the Index, does not have any knowledge of on-
tology package metadata. It contains all the original copies of the published packages
and makes them available for download.

4.2.3. Additional Metadata Storage

To support functionality related to package ownership, user authentication, access control
for private packages and mapping package versions to artifacts, the Registry Service also
maintains an additional metadata storage in the form of a relational database management
system (RDBMS).

4.3. Ontology Management Lifecycle Actions

Based on the components outlined in Section 4.2, we can now define the major process
steps [24] for package management. At the core is the pipeline of extract, resolve and
retrieve (Figure 1), which is completely automated. As each of the steps is independently
reproducible, the whole pipeline is reproducible given the same state of the ontology
document, Lockfile and Registry. In the common case of no changes to the ontology
document, an existing Lockfile, and previously retrieved ontology packages, the need for
communication with the Registry is completely eliminated, enabling the same pipeline
to be reused in an offline environment.

Figure 1. Outline of the package management process steps and their interaction with the registry
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4.3.1. extract

The extract step extracts all dependency requirements from the ontology source file by
parsing the file according to its serialization format (in our case Turtle), and reading
triples with the registry:dependency predicate.

4.3.2. resolve

The resolve step takes the dependency requirements from the extract step, and computes
a set of concrete dependency versions, which is serialized and persisted as a Lockfile. To
do this, a dependency resolution algorithm, which has read access to the Index, is run to
determine a set of dependency versions in a way that the dependency requirements for
all transitive dependencies are satisfied. If the resolve step has been run previously, the
existing Lockfile will be used as an additional input to the resolve step, which allows
previously selected package versions to take precedence in the dependency resolution.
In the case of an existing Lockfile and no changes to the dependency requirements, this
results in the step being reduced to a No-Op, as all dependency requirements are already
fulfilled, eliminating the need to read from the Index and making this common case
fully reproducible. In the case of an existing Lockfile and a change to the dependency
requirements, this results in only the required amount of (transitive) dependencies being
updated to satisfy the changed dependency requirements. This increases the stability of
addition, removal, and update operations to the dependency requirements, as it prevents
unintended updates of dependencies unrelated to the change in requirements.

Our implementation is built on an implementation of the PubGrub version solving
algorithm [25, 26]. One aspect that many dependency resolution algorithms differ in is
the decision what to do about conflicting package versions in the dependency trees, with
the two main options being a) allowing multiple different versions of a package to be
present in the dependency tree, which allows some sets of dependency requirements to
be successfully solved, or b) ensuring that only a single version of the package is present
in the dependency tree.

Allowing for multiple versions of a package to be present as dependencies, is an
option that is often chosen in package management for compiled languages, where at
compile time the identity of an imported entity can be traced back to one specific package
version and usage of that entity is restricted to only occur with other entities from the
same package (e. g., type Foo of package version 1.2.0 can be used as an argument
for function bar of package version 1.2.0, but it cannot be used with function bar of
incompatible package version 2.0.0). As many ontology tools today rely on using the
IRI (which is the same across different versions of an ontology package) for identifying
an ontology, importing multiple versions of an ontology dependency is generally not
supported. As we want to keep compatibility with those tools, we chose the option of
only permitting a single version of an ontology package in the dependency tree for Plow.

4.3.3. retrieve

The retrieve step takes the concrete dependency versions resulting from the resolve step,
and downloads the package versions from the Artifact Store for local usage. This step
may have slight variations (or steps that run directly after it), depending on the use case.
For the local editing of ontologies, we provide a variation of the step with similar func-
tionality to the OntoMvnImport plugin of OntoMaven [13], where an XMLCatalog file
is created with locations of the local copies of ontology packages.
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4.3.4. update

With the update action we can update the dependencies as specified in the ontology.
As this operation may result in an unresolvable set of dependency requirements, this
should be modeled as a fallible operation, where a backup of a previous state with good
dependency requirements is kept, which can be restored in case of failure.

4.3.5. publish

In the publish action, an ontology maintainer submits an ontology package version to
the Registry for inclusion in the Index and Artifact Store, making it available to other
users and consumers of the Registry. During submission, the Registry Service validates
the presence of all metadata required for dependency management.

4.4. CLI and GUI

To make these actions available to end users, we provide the CLI command plow, which
targets developers and continuous integration and continuous delivery (CI/CD) use cases.
For less tech-savvy users we also provide a GUI application. Both support all lifecycle
actions (Section 4.3).

4.5. Availability of the Tool

The code for the CLI, GUI, the library with their common logic, as well as a reference
implementation of the registry service that outlines the REST API are open sourced
under a permissive license and made available on GitHub.2 We also provide a fully-
featured hosted version of the registry service,3 for which we decided not to open-source
the underlying code, as it is tightly integrated with our infrastructure and relies on paid
third-party services.

5. Plow in Use

Through the interaction with business clients, we are able to highlight the advantages of
Plow for maintaining a set of ontology packages. By sharing our experience in building
a Software as a Service (SaaS) product which integrates Plow we can also highlight how
Plow enables a highly dynamic usage of ontologies in a user-facing product.

5.1. Dependency Tree Maintenance

For multiple of our clients we maintain a set of roughly 30 ontology packages related to
the domain of software development, agile software development practices and related
metrics. This set of packages is strongly interlinked, with the two most pathological cases
being the ontologies that define the core concepts of software development and metrics,
which are used by most of the other packages either directly or indirectly.

2https://github.com/field33/plow
3https://registry.field33.com
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As each of the clients has separate release cycles during which the package contents
are fixed, and even during a new release only a subset of the ontologies is supposed to
be updated, the naive approach of just maintaining a single “current” version for each
ontology was not an option, as updating that ontology could accidentally deliver changes
to customers that should not receive them. To satisfy these requirements, the predecessor
system to Plow was introduced, which could handle package management of ontologies
with transitive dependencies, but with the limitation that only exact version requirements
between ontologies could be specified.

While this system worked well, with an increasing number of ontologies, it put more
strain on the ontology maintainers. Due to the fixed version requirements, even a minor
change (e. g., fixing a typo) to one of the core packages that many other packages de-
pended on became cumbersome to fix. When a new version of the core package was re-
leased, the fixed version requirement in all dependant packages had to be adjusted and a
new version of them released, and then the same had to be done for the packages depen-
dant on them, and so on. This meant that a change in one of the core ontologies triggered
a cascade of manual changes and releases in the dependency tree, increasing the work the
ontology maintainers had to do, and increasing the delay of new ontology-based features
to the clients, as changes started to be batched into bigger releases.

Through the introduction of Plow, with its SemVer-based dependency requirements,
this problem was completely resolved, allowing ontology maintainers to focus their time
on expanding the scope of ontologies and focusing on breaking changes between on-
tology versions. Smaller bug fixes and backwards-compatible feature additions are now
published under the appropriate increases of MINOR and PATCH version, and can be
updated by re-running the dependency resolution.

5.2. Field 33: An Integrated Use Case

Plow is one of the central components of the Field 33 platform, a SaaS knowledge graph
product. Each customer or user (in the form of an organization) maintains their own
knowledge graph, with a different set of ontologies loaded for each of them. As users
are not expected to have prior knowledge of semantic data technologies or ontology
management, they are presented with a set of options in the form of domain packages
like “Software Development”, which they can load into their knowledge graph, together
with a desired level of version stability towards automated updates.

With the help of Plow, this is translated into a set of SemVer-based dependency
requirements, which are resolved to a set of ontology package versions that are loaded
into the customer’s graph (see Figure 2). To make new versions of ontologies available
to customers, a curation layer is employed that builds on top of the stable identifiers for
Plow package versions. By providing the Plow Registry as the interface for publication
and consumption of the ontologies and reducing the involvement of our company to the
role of a platform provider, the task of ontology maintenance can also be done by public
contributors, contracted third-parties or customers if they have specialized staff.

6. Evaluation and Limitations

To evaluate Plow, we compare it with four similar solutions that provide state-of-the-art
capabilities in their respective areas. The comparison focused upon selected features in
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Figure 2. Plow package network visualization, showing package boundaries and contained ontology concepts,
for a subset of the Software Development domain in the Field 33 product

the categories of access to ontologies and usability in industry-ready ontology engineer-
ing (see Section 3) in a comparison matrix (Table 2, adapted from [7]).

Plow is the only solution providing an integrated approach to ontology management
by providing a state-of-the-art registry service and bundling it with tooling for ontology
engineers to enable first-party publishing and consumption of ontology packages. While
both Archivo and Plow provide unified SemVer version numbers, there is a difference in
approach, where Plow relies on version numbers provided by maintainers, where Archive
has to try and derive a fitting version number from the ontologies it scrapes. OntoMaven
has the biggest workflow similarities when it comes to the publication and consumption
of ontology packages, though OntoMaven is lacking reproducibility, as well as a hosted
public instance of its repository.

Table 2. Solution comparison based on features in the areas of access and usability

Dimensions Access Usability

Solution TY DO SM OV OF MA MT DR SC HS

Plow R,D I – / �1 � / � � � / – � / � � / � � �
Archivo R I � / � � / � � � / � – / – – / – – �
BioPortal R,D S – / �1 � / – � �1/ � – / – – / – – �
Ontohub R,D I – / �1 � / – � �1/ – – / – – / – – �
OntoMaven D I – / �1 � / – � �2/ – � / – � / �3 – –

� = provides property; � = provides property partially; – = does not provide property; TY:
Solution type: (R)egistry/Repository/Archive, (D)evelopment platform; DO: ont. domain focus:
(S)pecialized vs. (I)ndependent; SM; mode of (automated) ont. submission: inclusion request/di-
rect upload; OV: ont. version numbers: unified/SemVer; OF: access to ont. in one unified format;
MA: ont. metdata access via REST API/SPARQL; MT: maintainer tools: CLI/GUI; DR: depen-
dency resolution/including Lockfile; SC: supply-chain security measures; HS: hosted public in-
stance
1 account/login required; 2 depending on used Maven repository service;
3 can be achieved via a Maven plugin;
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As we have focused on establishing the functionalities required for full end-to-end
package management workflows, Plow is currently limited in the variety of supported
ontology languages and serialization formats, by only supporting OWL ontologies se-
rialized as Turtle. We also recognize that parts of the assumptions regarding program-
ming language managers and their inherent connection to their respective ecosystems
are based on subjective experience by interacting with them, which is why we would
welcome additional research in these areas.

7. Conclusions and Future Work

This article first outlines the broad requirements for a state-of-the-art package manage-
ment solution for ontologies and our specific approach. We then highlight details of the
implementation of the individual components that make up our unified approach, Plow.
By taking a look at how our tool has been used in a production setting, we illustrate its
ease of use with regard to maintenance of a set of interlinked ontologies and integration
into a user-facing application.

With the core functionality of our package management solution established, our
next steps include the implementation for support of a wider range of established ontol-
ogy formats, to allow for consuming most existing popular ontologies as Plow packages.
We will also add support for consuming packages from multiple registries at the same
time, as well as adding automated mirroring of indices and artifacts between registries,
to be able to support a wider range of industrial use cases.
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